IntroductionChronic obstructive pulmonary disease (COPD) is a progressive disorder that makes the breathing difficult and is characterized by pathological conditions ranging from chronic inflammation to tissue proteolysis. With regard to ethical issues related to the studies on patients with COPD, the use of animal models of COPD is inevitable. Animal models improve our knowledge about the basic mechanisms underlying COPD physiology, pathophysiology and treatment. Although these models are only able to mimic some of the features of the disease, they are valuable for further investigation of mechanisms involved in human COPD.MethodsWe searched the literature available in Google Scholar, PubMed and ScienceDirect databases for English articles published until November 2015. For this purpose, we used 5 keywords for COPD, 3 for animal models, 4 for exposure methods, 3 for pathophysiological changes and 3 for biomarkers. One hundred and fifty-one studies were considered eligible for inclusion in this review.ResultsAccording to the reviewed articles, animal models of COPD are mainly induced in mice, guinea pigs and rats. In most of the studies, this model was induced by exposure to cigarette smoke (CS), intra-tracheal lipopolysaccharide (LPS) and intranasal elastase. There were variations in time course and dose of inducers used in different studies. The main measured parameters were lung pathological data and lung inflammation (both inflammatory cells and inflammatory mediators) in most of the studies and tracheal responsiveness (TR) in only few studies.ConclusionThe present review provides various methods used for induction of animal models of COPD, different animals used (mainly mice, guinea pigs and rats) and measured parameters. The information provided in this review is valuable for choosing appropriate animal, method of induction and selecting parameters to be measured in studies concerning COPD.
A B S T R A C TZataria multiflora Boiss (Z. multiflora) belongs to the Lamiaceae family is used traditionally for culinary and medicinal purposes. Different pharmacological effects have been described for the plant including; bronchodilation, vasodilation, and effect on lung inflammation. The plant is also used as a remedy against cough in the traditional medicine. In this article, 'pharmacological effects of Z. multiflora and its constituents focusing on their anti-inflammatory, antioxidant, and immunomodulatory properties were reviewed' by searching various databases until 'June' 2016. The anti-inflammatory effects of the plant such as decreased total white blood cell, neutrophils, and eosinophils counts were demonstrated. The sprotective effects of Z. multiflora on serum levels of phospholipase A2 and total protein were showed. In addition, constituents of the plant, such as flavonoids and carvacrol, also showed anti-inflammatory effects. Z. multiflora also reduced oxidative stress by scavenging free radicals and can be used in the therapy of oxidative damage. Decreased level of malondialdehyde and protective effects of Z. multiflora on serum levels of nitric oxide were also shown. Improvement of the serum levels of IgE, reduction in pro-inflammatory cytokine , and increased anti-inflammatory cytokines (IFN-c and FOXP3) were shown for Z. multiflora and its constituents, carvacrol and thymol. These results indicated that carvacrol and thymol could be used for treatment of inflammatory diseases as new anti-inflammatory agents. Therefore, Z. multiflora showed anti-inflammatory, antioxidant, and immunomodulatory effects which could be used for treatment of inflammatory and immune dysregulation diseases or disorders associated with increased oxidative stress.
Curcuma longa (C. longa) or turmeric is a plant with a long history of use in traditional medicine, especially for treating inflammatory conditions C. longa and its main constituent, curcumin (CUR), showed various pharmacological effects such as antioxidant and anti-microbial properties. The updated knowledge of anti-inflammatory, antioxidant, and immunomodulatory effects of C. longa and CUR is provided in this review article. Pharmacological effects of C. longa, and CUR, including anti-inflammatory, antioxidant, and immunomodulatory properties, were searched using various databases and appropriate keywords until September 2020. Various studies showed anti-inflammatory effects of C. longa and CUR, including decreased white blood cell, neutrophil, and eosinophil numbers, and its protective effects on serum levels of inflammatory mediators such as phospholipase A2 and total protein in different inflammatory disorders. The antioxidant effects of C. longa and CUR were also reported in several studies. The plant extracts and CUR decreased
In recent years, growing attention has been given to traditional medicine. In traditional medicine a large number of plants have been used to cure neurodegenerative diseases such as Alzheimer's disease (AD) and other memory related disorders. Crocus sativus (C. sativus), Nigella sativa (N. sativa), Coriandrum sativum (C. sativum), Ferula assafoetida (F. assafoetida), Thymus vulgaris (T. vulgaris), Zataria multiflora (Z. multiflora) and Curcuma longa (C. longa) were used traditionally for dietary, food additive, spice and various medicinal purposes. The Major components of these herbs are carotenoids, monoterpenes and poly phenol compounds which enhanced the neural functions.These medicinal plants increased anti-oxidant, decreased oxidant levels and inhibited acetylcholinesterase activity in the neural system. Furthermore, neuroprotective of plants occur via reduced pro-inflammatory cytokines such as IL-6, IL-1β, TNF-α and total nitrite generation.Therefore, the effects of the above mentioned medicinal and their active constituents improved neurodegenerative diseases which indicate their therapeutic potential in disorders associated with neuro-inflammation and neurotransmitter deficiency such as AD and depression.
Context: COVID-19 is a novel coronavirus that causes a severe infection in the respiratory system. Nigella sativa L. (Ranunculaceae) is an annual flowering plant used traditionally as a natural food supplement and multipurpose medicinal agent. Objective: The possible beneficial effects of N. sativa, and its constituent, thymoquinone (TQ) on COVID-19 were reviewed. Methods: The key words including, COVID-19, N. sativa, thymoquinone, antiviral effects, anti-inflammatory and immunomodulatory effects in different databases such as Web of Science (ISI), PubMed, Scopus, and Google Scholar were searched from 1990 up to February 2021. Results: The current literature review showed that N. sativa and TQ reduced the level of pro-inflammatory mediators including, IL-2, IL-4, IL-6, and IL-12, while enhancing IFN-c. Nigella sativa and TQ increased the serum levels of IgG1 and IgG2a, and improved pulmonary function tests in restrictive respiratory disorders. Discussion and conclusions: These preliminary data of molecular docking, animal, and clinical studies propose N. sativa and TQ might have beneficial effects on the treatment or control of COVID-19 due to antiviral, anti-inflammatory and immunomodulatory properties as well as bronchodilatory effects. The efficacy of N. sativa and TQ on infected patients with COVID-19 in randomize clinical trials will be suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.