The prime purpose for the image reconstruction of a multi-frame superresolution is to reconstruct a higher-resolution image through incorporating the knowledge obtained from a series of relevant low-resolution images, which is useful in numerous fields. Nevertheless, super-resolution image reconstruction methods are usually damaged by undesirable restorative artifacts, which include blurring distortion, noises, and stair-casing effects. Consequently, it is always challenging to achieve balancing between image smoothness and preservation of the edges inside the image. In this research work, we seek to increase the effectiveness of multi-frame super-resolution image reconstruction by increasing the visual information and improving the automated machine perception, which improves human analysis and interpretation processes. Accordingly, we propose a new approach to the image reconstruction of multi-frame super-resolution, so that it is created through the use of the regularization framework. In the proposed approach, the bilateral edge preserving and bilateral total variation regularizations are employed to approximate a high-resolution image generated from a sequence of corresponding images with low-resolution to protect significant features of an image, including sharp image edges and texture details while preventing artifacts. The experimental results of the synthesized image demonstrate that the new proposed approach has improved efficacy both visually and numerically more than other approaches.
The primary goal of the multiframe super-resolution image reconstruction is to produce an image with a higher resolution by integrating information extracted from a set of corresponding images with low resolution, which is used in various fields. However, super-resolution image reconstruction approaches are typically affected by annoying restorative artifacts, including blurring, noise, and staircasing effect. Accordingly, it is always difficult to balance between smoothness and edge preservation. In this paper, we intend to enhance the efficiency of multiframe super-resolution image reconstruction in order to optimize both analysis and human interpretation processes by improving the pictorial information and enhancing the automatic machine perception. As a result, we propose new approaches that firstly rely on estimating the initial high-resolution image through preprocessing of the reference low-resolution image based on median, mean, Lucy-Richardson, and Wiener filters. This preprocessing stage is used to overcome the degradation present in the reference low-resolution image, which is a suitable kernel for producing the initial high-resolution image to be used in the reconstruction phase of the final image. Then, L2 norm is employed for the data-fidelity term to minimize the residual among the predicted high-resolution image and the observed low-resolution images. Finally, bilateral total variation prior model is utilized to restrict the minimization function to a stable state of the generated HR image. The experimental results of the synthetic data indicate that the proposed approaches have enhanced efficiency visually and quantitatively compared to other existing approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.