Hydrogels catalyzed by horseradish peroxidase (HRP) serve as an efficient and effective platform for biomedical applications due to their mild reaction conditions for cells, fast and adjustable gelation rate in physiological conditions, and an abundance of substrates as water-soluble biocompatible polymers. In this review, we highlight the tunable characteristics and use of the HRP-catalyzed hydrogels and provide a brief overview of various substrates employed in the HRP system for different biomedical applications of the resultant hydrogels. In addition, we discuss and summarize the biocompatibility, possible functionalization, and biofabrication process. Finally, the future prospective of the HRP crosslinking system is highlighted with biomedical applications.
In recent years, various drug carrier nanomaterials have been investigated to improve drug delivery systems in cancer treatment. However, an ongoing requirement exists for more beneficial therapeutic materials, yielding rapid clearance, high capacity for reducing systemic toxicity via specific-tumor targeting, and superior drug solubility. Given that, carbon allotropes, including Active Carbon (AC), carbon nanotubes (CNTs), graphene and graphene oxides (GOs), nanodiamonds (NDs), fullerenes, carbon nanohorns, soporous carbons, and carbon dots, have been studied owing to their high thermal conductivity, rigid structure, flexibility for modification and functionalization, adequate surface-to-volume ratio, and high biocompatibility. This review aims to overview recent advances in applying different carbon allotrope composites in drug delivery-based cancer therapy systems.
Carbon-based materials. including carbon nanotubes, graphene, and activated carbon, are among the most effective materials for pharmaceutical components removal from water. Despite the severe effect of pharmaceutical micropollutants in the aquatic environments and the effectiveness of carbon-based composites for water treatment, only a few studies has reviewed carbon-based materials for the removal of pharmaceutical components.Carbon-based materials with special properties like tunable surface functions, abundant pore structure, and high specific surface are used in different water treatment mechanisms such as adsorption and advanced oxidation processes. Graphene, activated carbon, and carbon nanotubes have been widely studied for pharmaceutical components removal. Herein, we have introduced carbon-based materials and reviewed recent studies on their properties, application in water treatment, and possible mechanism for removal of pharmaceutical components from aquatic environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.