Sainfoin (Onobrychis viciifolia Scop. Syn. Onobrychis sativa L.) is a bloat-safe forage crop with high levels of tannins, which is renowned for its medicinal qualities in grazing animals. Mutagenesis technique was applied to investigate the influence of gamma irradiation at 30, 60, 90, and 120 Gy on mitotic behavior, in vitro growth factors, phytochemical and nutritional constituents of sainfoin. Although a percentage of plant necrosis and non-growing seed were enhanced by irradiation increment, the germination speed was significantly decreased. It was observed that gamma irradiated seeds had higher value of crude protein and dry matter digestibility compared to control seeds. Toxicity of copper was reduced in sainfoin irradiated seeds at different doses of gamma rays. Anthocyanin content also decreased in inverse proportion to irradiation intensity. Accumulation of phenolic and flavonoid compounds was enhanced by gamma irradiation exposure in leaf cells. HPLC profiles differed in peak areas of the two important alkaloids, Berberine and Sanguinarine, in 120 Gy irradiated seeds compared to control seeds. There were positive correlations between irradiation dose and some abnormality divisions such as laggard chromosome, micronucleus, binucleated cells, chromosome bridge, and cytomixis. In reality, radiocytological evaluation was proven to be essential in deducing the effectiveness of gamma irradiation to induce somaclonal variation in sainfoin.
One of the main challenges in the use of a powered lower limb exoskeleton (LLE) is to ensure that balance is maintained throughout the operation of the device. Since no control strategy has yet been implemented that prevents falls in the case of a loss of balance, head or other serious injuries may occur during independent use of LLEs in the event of a fall. These safety concerns limit LLEs in the community to supervised use only. Using the backward fall as a model, we used optimization techniques to develop safe fall control strategies in order to avoid head impact and mitigate the impact velocity of the hips. From available human biomechanics data, we first developed an optimization methodology to study falls of healthy people. The results showed similar kinematic and dynamic characteristics to findings of previous studies on real-life human falls. Second, we extended the optimization methodology to include characteristics of a hypothetical LLE and to generate optimal joint trajectories and optimal torque profiles for the fall duration. The results revealed that by applying the optimal fall strategy, the severity of a simulated fall was minimized compared to when the device fell with locked joints (i.e., how currently used exoskeletons fall): head impact was avoided and hip impact velocity was reduced by more than 50%.
Class engagement and participation has a direct impact on students’ learning. Improving participation has been one of the main focuses of education. It has been shown that classroom participation through asking questions can reinforce students’ learning process and improve their knowledge foundation. Classroom dynamics, that is, the interaction between the instructor and students, is another factor that influences students’ attentiveness and learning.The motivation for this pilot research is to examine the impact of using existing online platforms on the class participation and engagement of undergraduate Mechanical Engineering students at the University of British Columbia. By the use of this online platform, students can anonymously and dynamically provide feedback to the instructor and ask their questions.The findings of this work confirmed that classroom dynamics vary in different tutorial sections and instructional adjustments are necessary to accommodate students’ needs and learning dynamics. Overall, students were positive about the use of online platforms and more than 50% of the students suggested the use of this tool for future tutorials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.