To determine the zinc status in patients with major beta-thalassemia and its effect on their growth, the authors studied 64 thalassemic patients in comparison with 64 healthy matched individuals. Demographic and anthropometric data and history of the therapies were collected. Serum zinc level in both groups and ferritin in the thalassemic group were assigned. Interestingly, mean serum zinc level was significantly higher in the thalassemic group. No significant correlation between serum zinc level and short stature, serum ferritin level, desferrioxamine dose, initiating time of blood transfusion, and chelation therapy was found. The study indicates zinc deficiency in thalassemic patients who are on regular blood transfusion is rare and it seems that routine zinc supplementation is not necessary.
The sprouting of new blood vessels by angiogenesis is critical in vascular development and homeostasis. Aberrant angiogenesis leads to enormous pathological conditions such as ischemia and cancer. MicroRNAs (also known as miRNAs or miRs) play key roles in regulation of a range of cellular processes by posttranscriptional suppression of their target genes. Recently, new studies have indicated that miRNAs are involved in certain angiogenic settings and signaling pathways use these non-coding RNAs to promote or suppress angiogenic processes. Herein, VEGFR2 and FGFR1 were identified as miR-129-1 and miR-133 targets using bioinformatic algorithms, respectively. Afterwards, using luciferase reporter assay and gene expression analysis at both mRNA and protein levels, VEGFR2 and FGFR1 were validated as miR-129-1 and miR-133 targets. In addition, we showed that miR-129-1 and miR-133 suppress angiogenesis properties such as proliferation rate, cell viability, and migration activity of human umbilical vein endothelial cells (HUVEC) in vitro. We conclude that these miRNAs can suppress key factors of angiogenesis by directly targeting them. These results have important therapeutic implications for a variety of diseases involving deregulation of angiogenesis, including cancer.
Hematopoietic cancers are among the most common malignancies worldwide, which are divided into different types depending on the origin of tumor cells. In recent years, the pivotal role of different signaling pathways in the onset and progression of these cancer types has been well established. One of these pathways, whose role in blood malignancies has been well-defined, is PI3K/mTOR/AKT axis. The signaling pathway involves in a wide variety of important biological events in cells. It is clear that dysregulation of mediators involved in PI3 kinase signaling takes a pivotal role in cancer development. Considering the undeniable role of miRNAs, as one of the well-known families of non-coding RNAs, in gene regulation, we aimed to review the role of miR-NAs in regulation of PI3 kinase signaling effectors in hematopoietic cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.