The aim of this study was to identify isolates of Rhizoctonia solani causing hypocotyl rot and foliar blight in soybean (Glycine max) in Brazil by the nucleotide sequences of ITS-5.8S regions of rDNA. The 5.8S rDNA gene sequence (155 bp) was highly conserved among all isolates but differences in length and nucleotide sequence of the ITS1 and ITS2 regions were observed between soybean isolates and AG testers. The similarity of the nucleotide sequence among AG-1 IA isolates, causing foliar blight, was 95.1-100% and 98.5-100% in the ITS1 and ITS2 regions, respectively. The nucleotide sequence similarity among subgroups IA, IB and IC ranged from 84.3 to 89% in ITS1 and from 93.3 to 95.6% in ITS2. Nucleotide sequence similarity of 99.1% and 99.3-100% for ITS1 and ITS2, respectively, was observed between AG-4 soybean isolates causing hypocotyl rots and the AG-4 HGI tester. The similarity of the nucleotide sequence of the ITS-5.8S rDNA region confirmed that the R. solani Brazilian isolates causing foliar blight are AG-1 IA and isolates causing hypocotyl rot symptoms are AG-4 HGI. The ITS-5.8S rDNA sequence was not determinant for the identification of the AG-2-2 IIIB R. solani soybean isolate.
The Basidiomycete fungus Rhizoctonia solani anastomosis group (AG)-1 IA is a major pathogen of soybean in Brazil, where the average yield losses have reached 30 to 60% in some states in Northern Brazil. No information is currently available concerning levels of genetic diversity and population structure for this pathogen in Brazil. A total of 232 isolates of R. solani AG1 IA were collected from five soybean fields in the most important soybean production areas in central-western, northern, and northeastern Brazil. These isolates were genotyped using 10 microsatellite loci. Most of the multilocus genotypes (MLGTs) were site-specific, with few MLGTs shared among populations. Significant population subdivision was evident. High levels of admixture were observed for populations from Mato Grosso and Tocantins. After removing admixed genotypes, three out of five field populations (Maranhao, Mato Grosso, and Tocantins), were in Hardy-Weinberg (HW) equilibrium, consistent with sexual recombination. HW and gametic disequilibrium were found for the remaining soybean-infecting populations. The findings of low genotypic diversity, departures from HW equilibrium, gametic disequilibrium, and high degree of population subdivision in these R. solani AG-1 IA populations from Brazil are consistent with predominantly asexual reproduction, short-distance dispersal of vegetative propagules (mycelium or sclerotia), and limited long-distance dispersal, possibly via contaminated seed. None of the soybean-infecting populations showed a reduction in population size (bottleneck effect). We detected asymmetric historical migration among the soybean-infecting populations, which could explain the observed levels of subdivision.
Rhizoctonia solani AG-1 IA causes leaf blight on soybean and rice. Despite the fact that R. solani AG-1 IA is a major pathogen affecting soybean and rice in Brazil and elsewhere in the world, little information is available on its genetic diversity and evolution. This study was an attempt to reveal the origin, and the patterns of movement and amplification of epidemiologically significant genotypes of R. solani AG-1 IA from soybean and rice in Brazil. For inferring intraspecific evolution of R. solani AG-1 IA sampled from soybean and rice, networks of ITS-5.8S rDNA sequencing haplotypes were built using the statistical parsimony algorithm from Clement et al. (2000) Molecular Ecology 9: 1657-1660. Higher haplotype diversity (Nei M 1987, Molecular Evolutionary Genetics Columbia University Press, New york: 512p.) was observed for the Brazilian soybean sample of R. solani AG-1 IA (0.827) in comparison with the rest of the world sample (0.431). Within the south-central American clade (3-2), four haplotypes of R. solani AG-1 IA from Mato Grosso, one from Tocantins, one from Maranha˜o, and one from Cuba occupied the tips of the network, indicating recent origin. The putative ancestral haplotypes had probably originated either from Mato Grosso or Maranha˜o States. While 16 distinct haplotypes were found in a sample of 32 soybean isolates of the pathogen, the entire rice sample (n=20) was represented by a single haplotype (haplotype 5), with a worldwide distribution. The results from nested-cladistic analysis indicated restricted gene flow with isolation by distance (or restricted dispersal by distance in nonsexual species) for the south-central American clade (3-2), mainly composed by soybean haplotypes.
Ten polymorphic microsatellite loci were isolated and characterized from the rice- and maize-infecting Basidiomycete fungus Rhizoctonia solani anastomosis group AG-1 IA. All loci were polymorphic in two populations from Louisiana in USA and Venezuela. The total number of alleles per locus ranged from four to eight. All 10 loci were also useful for genotyping soybean-infecting R. solani AG-1 isolates from Brazil and USA. One locus, TC06, amplified across two other AG groups representing different species, showing species-specific repeat length polymorphism. This marker suite will be used to determine the global population structure of this important pathogenic fungus.
• Premise of the study: We developed a set of primers for Encholirium horridum, a species closely associated with inselbergs of the Atlantic Forest, to assess genetic diversity, genetic structure, and gene flow between populations of this species.• Methods and Results: From an enriched genomic library, 10 primer pairs for polymorphic microsatellite regions were developed. The average number of alleles ranged from eight to 20, and the observed and expected heterozygosities ranged from 0.000 to 1.000, and from 0.000 to 0.929, respectively, across the populations.• Conclusions: These markers will be useful in evaluating genetic diversity, spatial genetic structure, analysis of gene flow by paternity, and characterization of mating system of E. horridum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.