Applications such as boundary-layer-ingesting (BLI) fans and compressors in turboprop engines require continuous operation with distorted inflow. A low-speed axial fan with incompressible flow is studied in this paper. The objectives are to (1) identify the physical mechanisms which govern the fan response to inflow distortions and (2) determine how fan performance scales as the type and severity of inlet distortion varies at the design flow coefficient. A distributed source term approach to modeling the rotor and stator blade rows is used in numerical simulations in this paper. The model does not include viscous losses so that changes in diffusion factor are the primary focus. Distortions in stagnation pressure and temperature as well as swirl are considered. The key findings are that unless sharp pitchwise gradients in the diffusion response, strong radial flows, or very large distortion magnitudes are present, the response of the blade rows for strong distortions can be predicted by scaling up the response to a weaker distortion. In addition, the response to distortions which are composed of nonuniformities in several inlet quantities can be predicted by summing up the responses to the constituent distortions.
This paper reports results of experimental investigations on a linear cascade of axial compressor blades. Experiments were conducted in an open circuit subsonic wind tunnel of Aerodynamics Research Laboratory of the Iran University of Science and Technology. Different Reynolds numbers based on the blade chord length were examined, ranging from 80,000 to 500,000. Flow incidences were changed between −8 to +8 degrees with 2 degrees intervals. Freestream turbulence intensity was changed between 1.25 to 4 percent corresponding to different mesh screens mounted upstream of the test model. All the above flow conditions provided to establish various flow regimes, in terms of fully laminar and transitional flows, around the blades. At a specified range of Reynolds numbers laminar separation bubble/bubbles occurred over the blade solid walls. Surface pressure distributions were measured utilizing a computerized data acquisition system. Fluctuating velocities were also measured at various positions around the separation bubble zone, using hot film anemometry. Surface oil flow visualization was carried out for some selected flow conditions. Experimental results were used to study boundary layer characteristics and to determine variations of loss coefficient with each of Reynolds number, flow incidence and turbulence intensity parameters for the test model.
A recently developed transitional model for boundary-layer flows has been examined on a flat plate and the well-known S809 wind turbine blade. Proposed numerical model tries to simulate streamwise fluctuations, induced by freestream turbulence, in pre-transitional boundary-layer flows by introducing an additional transport equation for laminar kinetic energy term. This new approach can be used for modeling of transitional flows which are exposed to both the freestream turbulence intensity and streamwise pressure gradient, which are known as the most dominant factors in occurrence of transition. Computational method of this model is based on the solution of the Reynolds averaged Navier-Stokes (RANS) equations and the eddy-viscosity concept. The model includes three transport equations of laminar kinetic energy, turbulent kinetic energy and dissipation rate frequency. The present model is capable of predicting either natural or bypass transitional mechanisms, which may occur in attached boundary-layer flows. In addition, the model can simulate transition in the separated free shear layers and the subsequent turbulent re-attachment to form a laminar separation bubble. Flat plate was exposed to different freestream turbulence intensities and streamwise pressure gradients. Wind turbine blade was examined under two different Reynolds numbers, with one of them suitable for the occurrence of laminar separation bubbles on its surfaces. To evaluate the performance of this new model in resolving transitional boundary-layer flows, final results have been compared to those obtained through application of conventional turbulence models. Comparison of final results for the flat plate and the S809 aerofoil with available experimental data show very close agreements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.