MIR100HG is a long non‐coding RNA (lncRNA) encoded by a locus on chr11:122,028,203‐122,556,721. This gene can regulate cell proliferation, apoptosis, cell cycle transition and cell differentiation. MIR100HG was firstly identified through a transcriptome analysis and found to regulate differentiation of human neural stem cells. It is functionally related with a number of signalling pathways such as TGF‐β, Wnt, Hippo and ERK/MAPK signalling pathways. Dysregulation of MIR100HG has been detected in a diversity of cancers in association with clinical outcomes. Moreover, it has a role in the pathophysiology of dilated cardiomyopathy, intervertebral disk degeneration and pulmonary fibrosis. The current study summarizes the role of these lncRNAs in human disorders.
Long non-coding RNAs are demonstrated to contribute to carcinogenesis. TMPO Antisense RNA 1 (TMPO-AS1) is an example of lncRNAs with crucial roles in this process. This lncRNA serves as a sponge for miR-320a, miR-383-5p, miR-329-3p, miR-126, miR-329, miR‐199a‐5p, miR-577, miR-4731-5p, miR-140-5p, miR-1179, miR-143-3p, miR-326, miR-383-5p, let-7c-5p, let-7g-5p, miR-199a-5p, miR-200c, miR-204-3p, miR-126-5p, miR-383-5p, miR-498, miR-143-3p, miR-98-5p, miR-140 and miR-143. It can also affect activity of PI3K/Akt/mTOR pathway. The current review summarizes the role of TMPO-AS1 in the carcinogenesis and assessment of its potential as a marker for certain types of cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.