The long-chain base phytosphingosine is a component of sphingolipids and exists in yeast, plants and some mammalian tissues. Phytosphingosine is unique in that it possesses an additional hydroxyl group compared with other long-chain bases. However, its metabolism is unknown. Here we show that phytosphingosine is metabolized to odd-numbered fatty acids and is incorporated into glycerophospholipids both in yeast and mammalian cells. Disruption of the yeast gene encoding long-chain base 1-phosphate lyase, which catalyzes the committed step in the metabolism of phytosphingosine to glycerophospholipids, causes an B40% reduction in the level of phosphatidylcholines that contain a C15 fatty acid. We also find that 2-hydroxypalmitic acid is an intermediate of the phytosphingosine metabolic pathway. Furthermore, we show that the yeast MPO1 gene, whose product belongs to a large, conserved protein family of unknown function, is involved in phytosphingosine metabolism. Our findings provide insights into fatty acid diversity and identify a pathway by which hydroxyl group-containing lipids are metabolized.
In eukaryotes, autophagy is a conserved protein degradation system that degrades cytoplasmic components by encompassing them with double-membrane structures, called autophagosomes, and delivering them to the lytic compartments of vacuoles/lysosomes. Certain Atg proteins are known to be involved in autophagy, yet the identity and function of lipid molecules involved remain largely unknown. We investigated the involvement of sphingolipids in autophagy using Saccharomyces cerevisiae. Inhibiting synthesis of the simplest complex sphingolipid, inositol phosphorylceramide (IPC), resulted in reduced autophagic activities. Similar results were obtained using myriocin, an inhibitor of the first step in sphingolipid synthesis.Our results indicate that sphingolipids, especially IPC, are required for autophagy.Inhibition of sphingolipid synthesis had no effect on formation of Atg12-Atg5 or Atg8-phosphatidylethanolamine conjugates, on maturation of vacuolar proteases, or on formation of the pre-autophagosomal structure (PAS). These results suggest that sphingolipids are not involved in the cellular signaling that leads to formation of the PAS, but may be involved in the process of autophagosome formation.
Changes in membrane dynamics are known to occur in cells faced with starvation. However, the functions of the major lipid components of biological membranes, sphingolipids, during the starvation response remain unclear. In this study, we found that yeast cells lacking genes encoding mannosylinositol phosphorylceramide (MIPC) synthases (csg1D csh1D) underwent rapid cell death upon nitrogen starvation, but not upon carbon starvation or carbon and nitrogen starvation. Addition of NaN 3 prevented the nitrogen starvation-induced cell death of the csg1D csh1D cells, indicating that energy production is required for this rapid cell death. The cell death was caused by an accumulation of inositol phosphorylceramide (IPC) species containing phytosphingosine. Removing Ca 2+ by treating the cells with a calcium chelator or by changing the medium to a Ca 2+ -free medium before nitrogen starvation rescued the cells from death. Approximately half of the cells died shortly after collapse of the vacuole, whereas in the other half, morphological changes in the cytoplasm preceded vacuole disruption. Because the vacuole is the major Ca 2+ storage organelle, we suggest that the vacuole is involved in the cell death either directly or indirectly. We report here that normal synthesis of complex sphingolipids is important for cell survival in nitrogen-starved medium.
Yeast Phs1 is a 3‐hydroxyacyl‐CoA dehydratase involved in very long‐chain fatty acid elongation. In the present study, we biochemically characterized Phs1 mutants with Ala‐substitution at each of seven highly conserved amino‐acid residues. All mutants exhibited reduced Phs1 activity. The E60A, Q79A, and R141A mutants were sensitive to digitonin, indicative of their reduced structural integrity. The fatty acid elongation cycle was greatly inhibited in the R83A, R141A, and G152A mutant membranes. The enzyme kinetics study implicated the direct involvement of the Arg83 and Gly152 residues in the catalytic process. The E60A mutation was found to affect the substrate specificity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.