This paper describes an automated design technique to selectively use multi-threshold CMOS (MTCMOS) in a cell-by-cell fashion. MT cells consisting of low-Vth transistors and high-Vth sleep transistors are assigned to critical paths, while high-Vth cells are assigned to non-critical paths. Compared to the conventional MTCMOS, the gate delay is not affected by the discharge patterns of other gates because there is no virtual ground to be shared. We applied this technique to a test chip of a DSP core. The worst path-delay was improved by 14% over the single high-Vth design without increasing standby leakage at 10% area overhead.
Background COVID-19 currently poses a global public health threat. Although Tokyo, Japan, is no exception to this, it was initially affected by only a small-level epidemic. Nevertheless, medical collapse nearly happened since no predictive methods were available to assess infection counts. A standard susceptible-infectious-removed (SIR) epidemiological model has been widely used, but its applicability is limited often to the early phase of an epidemic in the case of a large collective population. A full numerical simulation of the entire period from beginning until end would be helpful for understanding COVID-19 trends in (separate) counts of inpatient and infectious cases and can also aid the preparation of hospital beds and development of quarantine strategies. Objective This study aimed to develop an epidemiological model that considers the isolation period to simulate a comprehensive trend of the initial epidemic in Tokyo that yields separate counts of inpatient and infectious cases. It was also intended to induce important corollaries of governing equations (ie, effective reproductive number) and equations for the final count. Methods Time-series data related to SARS-CoV-2 from February 28 to May 23, 2020, from Tokyo and antibody testing conducted by the Japanese government were adopted for this study. A novel epidemiological model based on a discrete delay differential equation (apparent time-lag model [ATLM]) was introduced. The model can predict trends in inpatient and infectious cases in the field. Various data such as daily new confirmed cases, cumulative infections, inpatients, and PCR (polymerase chain reaction) test positivity ratios were used to verify the model. This approach also derived an alternative formulation equivalent to the standard SIR model. Results In a typical parameter setting, the present ATLM provided 20% less infectious cases in the field compared to the standard SIR model prediction owing to isolation. The basic reproductive number was inferred as 2.30 under the condition that the time lag T from infection to detection and isolation is 14 days. Based on this, an adequate vaccine ratio to avoid an outbreak was evaluated for 57% of the population. We assessed the date (May 23) that the government declared a rescission of the state of emergency. Taking into consideration the number of infectious cases in the field, a date of 1 week later (May 30) would have been most effective. Furthermore, simulation results with a shorter time lag of T=7 and a larger transmission rate of α=1.43α0 suggest that infections at large should reduce by half and inpatient numbers should be similar to those of the first wave of COVID-19. Conclusions A novel mathematical model was proposed and examined using SARS-CoV-2 data for Tokyo. The simulation agreed with data from the beginning of the pandemic. Shortening the period from infection to hospitalization is effective against outbreaks without rigorous public health interventions and control.
The detailed three-dimensional P and S wave velocity structure in the focal region of the 1984 Western Nagano Prefecture Earthquake occurring close to an active volcano, Mt. Ontake, central Japan, is derived from a tomographic inversion of travel time data obtained by the 1986 Joint Seismological Research in Western Nagano Prefecture. The data set includes 7,693 P-wave and 6,070 S-wave arrival times observed at 49 stations from 212 local earthquakes and 2 explosions. The velocities in the shallow portion of upper crust are determined at each grid point with its spacing of 1-2 km and good resolutions are obtained from the Earth's surface to a depth of 4 km. There exist strong lateral heterogeneities especially from the surface to a depth of 1 km. The seismic velocity map obtained in the height of 1 km above sea level well corresponds to the maps of surface geology and Bouguer gravity anomaly. This correspondence, however, is not so clear in the deeper layers. And, the greater the depth, the less heterogeneous the velocity structure. The velocity distribution on the fault seems to correspond to the distribution of dislocation and rupture front estimated from an analysis of strong motion and geodetic data: the low velocity region has the large amount of dislocation and the retarded rupture front.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.