Wide-gap semiconductors with nanostructures such as nanoparticles, nanorods, nanowires are promising as a new type of UV photosensor. Recently, ZnO (zinc oxide) nanowires have been extensively investigated for electronic and optoelectronic device applications. ZnO nanowires are expected to have good UV response due to their large surface area to volume ratio, and they might enhance the performance of UV photosensors. In this paper, a new fabrication method of a UV photosensor based on ZnO nanowires using dielectrophoresis is demonstrated. Dielectrophoresis (DEP) is the electrokinetic motion of dielectrically polarized materials in non-uniform electric fields. ZnO nanowires, which were synthesized by nanoparticle-assisted pulsed-laser deposition (NAPLD) and suspended in ethanol, were trapped in the microelectrode gap where the electric field became higher. The trapped ZnO nanowires were aligned along the electric field line and bridged the electrode gap. Under UV irradiation, the conductance of the DEP-trapped ZnO nanowires exponentially increased with a time constant of a few minutes. The slow UV response of ZnO nanowires was similar to that observed with ZnO thin films and might be attributed to adsorption and photodesorption of ambient gas molecules such as O(2) or H(2)O. At higher UV intensity, the conductance response became larger. The DEP-fabricated ZnO nanowire UV photosensor could detect UV light down to 10 nW cm(-2) intensity, indicating a higher UV sensitivity than ZnO thin films or ZnO nanowires assembled by other methods.
Although both osteoblasts and adipocytes have a common origin, i.e., mesenchymal cells, the molecular mechanisms that define the direction of two different lineages are presently unknown. In this study, we investigated the role of a transcription factor, CCAAT/enhancer binding protein  (C/EBP), and its isoform in the regulation of balance between osteoblast and adipocyte differentiation. We found that C/EBP, which is induced along with osteoblast differentiation, promotes the differentiation of mesenchymal cells into an osteoblast lineage in cooperation with Runx2, an essential transcription factor for osteogenesis. Surprisingly, an isoform of C/EBP, liver-enriched inhibitory protein (LIP), which lacks the transcriptional activation domain, stimulates transcriptional activity and the osteogenic action of Runx2, although LIP inhibits adipogenesis in a dominant-negative fashion. Furthermore, LIP physically associates with Runx2 and binds to the C/EBP binding element present in the osteocalcin gene promoter. These data indicate that LIP functions as a coactivator for Runx2 and preferentially promotes the osteoblast differentiation of mesenchymal cells. Thus, identification of a novel role of the C/EBP isoform provides insight into the molecular basis of the regulation of osteoblast and adipocyte commitment.
Full varieties of strongly correlated electron phenomena have been found in the filled skutterudite systems, by changing the constituent elements. The unique crystal structure leads to novel features even in the systems containing rare earth elements with plural number of 4f -electrons. According to the intensive competitions and cooperation among experimental and theoretical research works, remarkable progress has been made in sorting out several basic origins that bring about the variety of this system, such as the strong c-f hybridization, the small CEF level splitting, the orbital degree of freedom (multipoles), and the positional degree of freedom within a pnictogen cage. However, there still remain many attractive questions to be answered.
Background: The triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio has been shown to be a predictor of cardiovascular (CV) outcomes in the general population. The aim of this study was to determine whether the TG/HDL-C ratio is a predictor of CV events and all-cause mortality in maintenance hemodialysis (MHD) patients. Methods: We performed a retrospective, observational cohort study in which we enrolled 193 MHD patients from a single center in Japan who had been followed up for a median of 3.9 years. The outcomes were the occurrence of a CV event and all-cause mortality during the follow-up period. Baseline TG/HDL-C ratios were investigated for associations with outcomes by using Cox regression models adjusted for demographic parameters. Results: Overall, 88 of the subjects experienced a CV event, and 32 patients had died, of whom 4 died due to CV events. Patients with higher TG/HDL-C levels (tertile 3) had a higher incidence of CV events (adjusted hazard ratio [HR] 1.82, 95 % confidence interval [CI] 1.01-3.35) and higher all-cause mortality (adjusted HR 6.13, 95 % CI 2.13-20.22) than the patients in tertile 1. Kaplan-Meier analyses by the log-rank test showed that the TG/HDL-C ratio had significant predictive power for detecting a CV event.Conclusions: The TG/HDL-C ratio is a reliable and easily accessible marker for predicting CV events and mortality in MHD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.