For the first time, nickel-aluminum layered double hydroxides containing holmium, thulium or lutetium cations were successfully synthesized via the coprecipitation method followed by hydrothermal treatment. X-ray diffraction data show the formation of hydrotalcite-like structures with the absence of impurity phases. The presence of lanthanides is confirmed by energy-dispersive X-ray spectrometry. Assumed empirical formulae for these compounds are [Ni0.796Al0.193Ho0.011] [(NO3)0.204·yH2O], [Ni0.808Al0.178Tm0.015] [(NO3)0.193·yH2O] and [Ni0.765Al0.219Lu0.016] [(NO3)0.235·yH2O]. These novel layered compounds demonstrate the fundamental ability of doping hydrotalcite-like compounds with any lanthanide cation, which gives rise to the synthesis of new materials with specific properties.
The work is devoted to the study of the sorption properties of hierarchical composite materials with a core-shell structure. The composites contained a core of SiO2 or Fe3O4@SiO2 obtained by sol-gel synthesis, on the surface of which a layered double hydroxide (MgAlFe-LDH) was deposited. The phase composition of the obtained materials was determined, and the textural characteristics and particle morphology were studied. It was found that hierarchical materials had larger surface and demonstrated high sorption capacity towards both cationic and anionic dyes in aqueous solution in comparison with individual systems (SiO2 and MgAlFe-LDH). It was shown that the sorption equilibrium in the system “dye solution – sorbent” for dye methylene blue was achieved faster in comparison with Congo red. The obtained kinetic data were analyzed using chemical kinetic models. The sorption of both Congo red and methylene blue on composite materials was found to be described by a pseudo-second order kinetic equation. Isotherms of sorption of Congo red and methylene blue on synthesized materials were plotted. The sorption capacity of Fe3O4@SiO2@LDH and SiO2@LDH towards Congo red were 0.19 mmol/g and 0.27 mmol/g, respectively. In the case of sorption of methylene blue, the sorption isotherms did not reach a plateau in the studied concentration range. However, it can be noted that at an initial methylene blue concentration of 0.051 mmol/L the sorption capacity of Fe3O4@SiO2@LDH and SiO2@LDH were 0.040 mmol/g and 0.033 mmol/g, respectively. The obtained data indicate that hierarchical composite materials containing LDH in their composition are effective bifunctional sorbents and can uptake both anionic and cationic forms of pollutants from a solution. An advantage of the Fe3O4 core system is its ability to be easily separate from a solution under the influence of an external magnetic field. It is important that the Fe3O4@SiO2@LDH sample exhibits a typical superparamagnetic behavior with zero coercitivity and residual magnetic induction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.