Richard Feynman’s 1959 vision of controlling devices at small scales and swallowing the surgeon has inspired the science-fiction Fantastic Voyage film and has played a crucial role in the rapid development of the microrobotics field. Sixty years later, we are currently witnessing a dramatic progress in this field, with artificial micro- and nanoscale robots moving within confined spaces, down to the cellular level, and performing a wide range of biomedical applications within the cellular interior while addressing the limitations of common passive nanosystems. In this review article, we discuss key recent advances in the field of micro/nanomotors toward important cellular applications. Specifically, we outline the distinct capabilities of nanoscale motors for such cellular applications and illustrate how the active movement of nanomotors leads to distinct advantages of rapid cell penetration, accelerated intracellular sensing, and effective intracellular delivery toward enhanced therapeutic efficiencies. We finalize by discussing the future prospects and key challenges that such micromotor technology face toward implementing practical intracellular applications. By increasing our knowledge of nanomotors’ cell entry and of their behavior within the intracellular space, and by successfully addressing key challenges, we expect that next-generation nanomotors will lead to exciting advances toward cell-based diagnostics and therapy.
Spatiotemporally controlled active manipulation of external micro-/nanoprobes inside living cells can lead to development of innovative biomedical technologies and inspire fundamental studies of various biophysical phenomena. Examples include gene silencing applications, real-time mechanical mapping of the intracellular environment, studying cellular response to local stress, and many more. Here, for the first time, cellular internalization and subsequent intracellular manipulation of a system of helical nanomotors driven by small rotating magnetic fields with no adverse effect on the cellular viability are demonstrated. This remote method of fuelling and guidance limits the effect of mechanical transduction to cells containing external probes, in contrast to ultrasonically or chemically powered techniques that perturb the entire experimental volume. The investigation comprises three cell types, containing both cancerous and noncancerous types, and is aimed toward analyzing and engineering the motion of helical propellers through the crowded intracellular space. The studies provide evidence for the strong anisotropy, heterogeneity, and spatiotemporal variability of the cellular interior, and confirm the suitability of helical magnetic nanoprobes as a promising tool for future cellular investigations and applications.
A wide variety of applications are envisioned and demonstrated with artificial micro‐ and nanomachines, ranging from targeted drug or gene delivery, microsurgery, environmental sensing, and many more. Here, it is demonstrated how helical nanomachines can be used to measure and map the local mechanical properties of a complex heterogeneous environment. The positions of the nanomachines are precisely controlled using externally applied magnetic fields, while their instantaneous orientations provide estimation of the viscosity of the surrounding medium with high spatial and temporal accuracy. The measurement technique can be applied to both Newtonian as well as shear thinning media, and all experimental results are in good agreement with the theoretical analysis. It is believed that this novel application of helical nanomachines can be particularly relevant to biophysical studies and microfluidic technologies.
Supporting information1. Dynamics of helical nanobots under rotating magnetic fields A helical nanorobot actuated under rotating magnetic field shows different kind of dynamics depending upon the applied field, frequency and the fluid viscosity. This difference in dynamics
Magnetic nano- and microswimmers provide a powerful platform to study driven colloidal systems in fluidic media and are relevant to futuristic medical technologies requiring precise yet minimally invasive motion control at small scales. Upon the action of a rotating magnetic field, the helical microswimmers rotate and translate, generating flow in the surrounding fluid. In this paper, we study the fluid flow induced by the rotating helices using a combination of experiments, numerical simulations, and theory. The microhelices are actuated either in a fluid bulk or in proximity to the bottom wall using typical microfluidic device setup. We conclude that the mean hydrodynamic flow due to the helix actuation can be closely approximated by a system of rotlets line distributed along the helical axis (i.e., representing the flow due to rotating cylinder) which gets modified close to a wall through appropriate contributions from image multipoles. As the mean flow can be obtained in closed form, this study can be further applied towards modeling of the dynamics in a swarm of driven microswimmers interacting hydrodynamically near a bounding surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.