Spatiotemporally controlled active manipulation of external micro-/nanoprobes inside living cells can lead to development of innovative biomedical technologies and inspire fundamental studies of various biophysical phenomena. Examples include gene silencing applications, real-time mechanical mapping of the intracellular environment, studying cellular response to local stress, and many more. Here, for the first time, cellular internalization and subsequent intracellular manipulation of a system of helical nanomotors driven by small rotating magnetic fields with no adverse effect on the cellular viability are demonstrated. This remote method of fuelling and guidance limits the effect of mechanical transduction to cells containing external probes, in contrast to ultrasonically or chemically powered techniques that perturb the entire experimental volume. The investigation comprises three cell types, containing both cancerous and noncancerous types, and is aimed toward analyzing and engineering the motion of helical propellers through the crowded intracellular space. The studies provide evidence for the strong anisotropy, heterogeneity, and spatiotemporal variability of the cellular interior, and confirm the suitability of helical magnetic nanoprobes as a promising tool for future cellular investigations and applications.
Supporting information1. Dynamics of helical nanobots under rotating magnetic fields A helical nanorobot actuated under rotating magnetic field shows different kind of dynamics depending upon the applied field, frequency and the fluid viscosity. This difference in dynamics
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.