In this study, differences in the kinetics of the thermal-supported hydrolytic degradation of polylactide (PLA) wet spinning fibres due to material variance in the initial molecular and supramolecular structure were analysed. The investigation was carried out at the microstructural and molecular levels by using readily available methods such as scanning electron microscopy, mass erosion measurement and estimation of intrinsic viscosity. The results show a varying degree of influence of the initial structure on the degradation rate of the studied PLA fibres. The experiment shows that hydrolytic degradation at a temperature close to the cold crystallization temperature is, on a macroscopic level, definitely more rapid for the amorphous material, while on a molecular scale it is similar to a semi-crystalline material. Furthermore, for the adopted degradation temperature of 90 °C, a marginal influence of the pH of the degradation medium on the degradation kinetics was also demonstrated.
The aim of this study was to investigate an antimicrobial and degradable composite material consisting of melt-blown poly(lactic acid) nonwoven fabrics, alginate, and zinc. This paper describes the method of preparation and the characterization of the physicochemical and antimicrobial properties of the new fibrous composite material. The procedure consists of fabrication of nonwoven fabric and two steps of dip-coating modification: (1) impregnation of nonwoven samples in the solution of alginic sodium salt and (2) immersion in a solution of zinc (II) chloride. The characterization and analysis of new material included scanning electron microscopy (SEM), specific surface area (SSA), and total/average pore volume (BET). The polylactide/alginate/Zn fibrous composite were subjected to microbial activity tests against colonies of Gram-positive (Staphylococcus aureus), Gram-negative (Escherichia coli) bacterial strains, and the following fungal strains: Aspergillus niger van Tieghem and Chaetomium globosum. These results lay a technical foundation for the development and potential application of new composite as an antibacterial/antifungal material in biomedical areas.
Fibers formed by
the wet spinning method from commercially available
polylactide (PLA) variants with different d-lactide isomer
contents were exposed to thermally supported hydrolytic degradation
in environments with different pH values. This paper focuses on the
evolution of the supramolecular structure of PLA during the accelerated
degradation progress of real fabricated materials. The disorder-to-order
phase transition phenomenon was investigated using wide-angle X-ray
diffraction (WAXD). Additionally, differential scanning calorimetry
(DSC) was applied to determine the supramolecular changes and resulting
thermal properties of the polymer. The obtained results clearly show
the formation of irreversible changes in the structure of the polymer,
which could be an indication of the formation of microplastics (microcrystallites),
as further verified by Fourier transform infrared (FTIR) spectroscopy.
Transformations at the molecular and supramolecular levels depend
slightly on the pH of the environment if the process is performed
at temperatures near the cold crystallization point. Rapid structural
transformations lead to irreversible changes and unknown thermal properties
of the polymer. Instead, these changes depend on the content of the d-lactide isomer in the PLA structure. The article shows a new
extended experimental overview of the degradation of real PLA objects
and creates a field for further theoretical analysis.
The aim of this investigation was to evaluate the biological properties of cotton–zinc composites. A coating of zinc (Zn) on a cotton fabric was successfully obtained by a DC magnetron sputtering system using a metallic Zn target (99.9%). The new composite was characterized using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS), UV/Vis transmittance, and atomic absorption spectrometry with flame excitation (FAAS). The composite was tested for microbial activity against colonies of Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and antifungal activity against Aspergillus niger and Chaetomium globosum fungal mold species as model microorganisms. Cytotoxicity screening of the tested modified material was carried out on BALB/3T3 clone mouse fibroblasts. The SEM/EDS and FAAS tests showed good uniformity of zinc content on a large surface of the composite. The conducted research showed the possibility of using the magnetron sputtering technique as a zero-waste method for producing antimicrobial textile composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.