The pioneering developed simplified mathematical model can be used to determine the energy consumption of the torrefaction process. Specifically, the energy balance model was developed for torrefaction of municipal solid waste (MSW; a combustible fraction of common municipal waste). Municipalities are adopting waste separation and need tools for energy recovery options. This type of model is needed for initial decision-making, evaluation of cost estimates, life cycle analysis (LCA), and for optimizing the torrefaction of MSW. The MSW inputs are inherently variable and are site-, location-, and country-dependent. Thus, in this model, MSW inputs consist of eight types of common municipal waste components: chicken meat, diapers, gauze, eggs packaging, paper receipts, cotton, genuine leather, and polypropylene. The model uses simple experimental input consisting of thermogravimetric (TGA) and differential scanning calorimetry (DSC) analyses for each type of individual MSW material. The model was created in a Microsoft Office Excel spreadsheet and is available for download and use for site-specific waste mixes and properties. The model allows estimating the energy demand of the process depending on the percentage composition of the MSW and the final torrefaction temperature. The model enables initial optimization of the torrefaction process regarding its energy demand by changing the proportion of MSW mix and the final temperature.
We have been advancing the concept of carbonized refuse-derived fuel (CRDF) by refuse-derived fuel (RDF) torrefaction as improved recycling to synergistically address the world’s energy demand. The RDF is a combustible fraction of municipal solid waste (MSW). Many municipalities recover RDF for co-firing with conventional fuels. Torrefaction can further enhance fuel properties and valorize RDF. Energy demand for torrefaction is one of the key unknowns needed for scaling up CRDF production. To address this need, a pioneering model for optimizing site-specific energy demand for torrefaction of mixed RDF materials was developed. First, thermogravimetric and differential scanning calorimetry analyses were used to establish thermal properties for eight common RDF materials. Then, the model using the %RDF mix, empirical thermal properties, and torrefaction temperature was developed. The model results for individual RDF components fitted well (R2 ≥ 0.98) with experimental torrefaction data. Finally, the model was used to find an optimized RDF site-specific mixture with the lowest energy demand. The developed model could be a basis for estimating a net energy potential from the torrefaction of mixed RDF. Improved models could be useful to make plant-specific decisions to optimize RDF production based on the energy demand that depends on highly variable types of MSW and RDF streams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.