Background/aims:Non-alcoholic fatty liver disease is one of the most common chronic liver diseases. Some risk factors are known to influence the development of non-alcoholic fatty liver disease, but the effect of tobacco smoking on the progression of non-alcoholic fatty liver disease is controversial. The main goal of this systematic review and meta-analysis is to investigate the association between smoking and non-alcoholic fatty liver disease.Method:Electronic databases (PubMed, Scopus, and ISI Web of Science) were searched to find published articles on non-alcoholic fatty liver disease and smoking until December 2016. All relevant studies were screened by inclusion and exclusion criteria and compatible studies were chosen. The Newcastle–Ottawa Scale was used to assess the methodological quality of eligible articles. Subsequently, information was gathered based on the following: author, publication year, keywords, country, inclusion and exclusion criteria, main results, study design, conclusion, and confounder variables (age, body mass index, gender, ethnicity, and diabetes). Finally, analyses were performed using Comprehensive Meta-Analysis Software.Results:Data were extracted from 20 observational studies (9 cross-sectional, 6 case-control, 4 cohort studies, and 1 retrospective cohort study). A significant association was observed between smoking and non-alcoholic fatty liver disease with a pooled odds ratio of 1.110 (95% confidence interval, 1.028–1.199), p-value = 0.008. The statistical heterogeneity was medium with an I2 of 40.012%, p-heterogeneity = 0.074. Also there was a significant relation between non-alcoholic fatty liver disease and passive smoking with a pooled odds ratio of 1.380 (95% confidence interval, 1.199–1.588; p-value = 0.001; I2 = 59.41; p-heterogeneity = 0.117).Conclusion:Our meta-analysis demonstrated that smoking is significantly associated with non-alcoholic fatty liver disease. Further prospective studies exploring the underlying mechanisms of this association should be pursued. Also passive smoking increases the risk of non-alcoholic fatty liver disease about 1.38-fold. The effects of smoking cigarettes on active smokers (current smoker, former smoker, and total smoker) are less than passive smokers. Further studies are needed to compare the of effects of passive and active smoking on non-alcoholic fatty liver disease.
Air pollutants and their interaction with environmental allergens have been considered as an important reason for the recent increase in the prevalence of allergic diseases. The aim of this study was to investigate the traffic pollution effect, as a stressor, on Platanus orientalis pollen allergens messenger RNA (mRNA) and protein expression. P. orientalis pollen grains were collected along main streets of heavy traffic and from unpolluted sites in Mashhad city, in northeast Iran. The pollen samples were examined by scanning electron microscopy. To assess the abundance of pollen allergens (Pla or 1, Pla or 2, and Pla or 3) from polluted and unpolluted sites, immunoblotting was performed. Moreover, the sequences encoding P. orientalis allergens were amplified using real-time PCR. Scanning electron microscopy showed a number of particles of 150-550 nm on the surface of pollen from polluted sites. Also, protein and gene expression levels of Pla or 1 and Pla or 3 were considerably greater in pollen samples from highly polluted areas than in pollen from unpolluted areas (p < 0.05). In contrast, no statically significant difference in Pla or 2 protein and mRNA expression level was found between samples from the two areas. We found greater expression of allergens involved in plant defense mechanisms (Pla or 1 and Pla or 3) in polluted sites than in unpolluted ones. The high expression of these proteins can lead to an increase in the prevalence of allergic diseases. These findings suggest the necessity of supporting public policies aimed at controlling traffic pollution to improve air quality and prevent the subsequent clinical outcomes and new cases of asthma.
Chenopodium album pollen is one of the main sources of pollen allergy in desert and semi-desert areas and contains three identified allergens, so the aim of this study is comparison of the diagnostic potential of C. album recombinant allergens in an allergenic cocktail and C. album pollen extract. Diagnostic potential of the allergenic cocktail was investigated in 32 individuals using skin prick test and obtained results were compared with the acquired results from C. album pollen extract. Specific IgE reactivity against the pollen extract and allergenic cocktail was determined by ELISA and western blotting tests. Inhibition assays were performed for the allergenic cocktail characterization. The exact sensitization profile of all patients was identified which showed that 72, 81 and 46% of allergic patients had IgE reactivity to rChe a 1, rChe a 2 and rChe a 3, respectively. Almost all of C. album allergic patients (30/32) had specific IgE against the allergenic cocktail. In addition, there was a high correlation between IgE levels against the allergenic cocktail and IgE levels against the pollen extract. The allergenic cocktail was able to completely inhibit IgE binding to natural Che a 1, Che a 2 and Che a 3 in C. album extract. In addition, positive skin test reactions were seen in allergic patients that tested by the allergenic cocktail. The reliable results obtained from this study confirmed that the allergenic cocktail with high diagnostic potential could be replaced with natural C. album allergen extracts in skin prick test and serologic tests.
The profilin from the A. retroflexus pollen, Ama r 2, was firstly identified as an allergen. Moreover, rAma r 2 was produced in E. coli as a soluble immunoreactive protein with an IgE-reactivity similar to that of its natural counterpart.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.