Photocurable materials that can be delivered as liquids and rapidly (within seconds) cured in situ using UV light are gaining increased interest in advanced minimally invasive procedures. The aim of this work was to synthesize and characterize fatty-acid-derived ester-urethane telechelic (methacrylate) macromonomers, suitable for photopolymerization. The commonly used dibutyltin dilaurate catalyst was replaced with bismuth neodecanoate, bismuth tris(2-ethylhexanoate), and zinc (II) acetyloacetonate as less-toxic alternative catalysts. Additionally, ethyl acetate was used as a “green” solvent. The progress of the two-step synthesis was monitored with infrared spectroscopy. The chemical structure and molecular weight of the obtained viscous materials was characterized with nuclear magnetic resonance spectroscopy and gel permeation chromatography. Photocrosslinking of the macromonomers into elastomeric films was achieved using 150 s per spot of UV light (20 mW/cm2) exposure. Mechanical tensile testing of the films indicated their elasticity up to 120% and low modulus typical for soft and elastomeric materials. Finally, in vitro cytotoxicity tests showed high cell viability for the case of materials synthesized using bismuth and zinc catalysts. Overall, our results indicate that bismuth and zinc catalysts are excellent alternatives to organotin compounds in the synthesis of photocurable methacrylate ester-urethanes for potential biomedical applications.
Novel advanced biomaterials have recently gained great attention, especially in minimally invasive surgical techniques. By applying sophisticated design and engineering methods, various elastomer–hydrogel systems (EHS) with outstanding performance have been developed in the last decades. These systems composed of elastomers and hydrogels are very attractive due to their high biocompatibility, injectability, controlled porosity and often antimicrobial properties. Moreover, their elastomeric properties and bioadhesiveness are making them suitable for soft tissue engineering. Herein, we present the advances in the current state-of-the-art design principles and strategies for strong interface formation inspired by nature (bio-inspiration), the diverse properties and applications of elastomer–hydrogel systems in different medical fields, in particular, in tissue engineering. The functionalities of these systems, including adhesive properties, injectability, antimicrobial properties and degradability, applicable to tissue engineering will be discussed in a context of future efforts towards the development of advanced biomaterials.
Injectable and in situ photocurable biomaterials are receiving a lot of attention due to their ease of application via syringe or dedicated applicator and ability to be used in laparoscopic and robotic minimally invasive procedures. The aim of this work was to synthesize photocurable ester-urethane macromonomers using a heterometallic magnesium-titanium catalyst, magnesium-titanium (IV) butoxide. The progress of the two-step reaction was monitored using infrared spectroscopy. The chemical structure and molecular weight of the obtained macromonomers were characterized using nuclear magnetic resonance spectroscopy and gel permeation chromatography. The dynamic viscosity of the obtained macromonomers was evaluated by a rheometer. Next, the photocuring process was studied under both air and argon atmospheres. Thermal and dynamic mechanical thermal properties of the photocured material were investigated. Finally, in vitro cytotoxicity screening based on ISO10993-5 revealed high cell viability (over 77%) regardless of curing atmosphere. Overall, our results indicate that this heterometallic magnesium-titanium butoxide catalyst can be an attractive alternative to commonly used homometallic catalysts for the synthesis of injectable and photocurable materials for medical applications.
Injectable and in situ photocurable biomaterials are receiving a lot of attention due to their ease of application via syringe or dedicated applicator and ability to be used in laparoscopic and robotic minimally invasive procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.