Gas chromatography–mass spectrometry (GC–MS) in electron ionization (EI) mode is one of the most commonly used techniques for analysis of synthetic cannabinoids, because the GC–EI-MS spectra contain characteristic fragment ions for identification of a compound; however, the information on its molecular ions is frequently lacking. To obtain such molecular ion information, GC–MS in chemical ionization (CI) mode is frequently used. However, GC–CI-MS requires a relatively tedious process using reagent gas such as methane or isobutane. In this study, we show that GC–MS in photoionization (PI) mode provided molecular ions in all spectra of 62 synthetic cannabinoids, and 35 of the 62 compounds showed only the molecular radical cations. Except for the 35 compounds, the PI spectra showed very simple patterns with the molecular peak plus only a few fragment peak(s). An advantage is that the ion source for GC–PI-MS can easily be used for GC–EI-MS as well. Therefore, GC–EI/PI-MS will be a useful tool for the identification of synthetic cannabinoids contained in a dubious product. To the best of our knowledge, this is the first report to use GC–PI-MS for analysis of synthetic cannabinoids.
PurposePhenethylamines constitute the majority of drug-related arrests in Japan. Recently, the smuggling of tert-butoxycarbonyl (t-Boc)-protected phenethylamines has become of increasing concern, because of the difficult identification of these masked substances.MethodsIn this study, a rapid and accurate method for the detection of t-Boc-methamphetamine (t-Boc-MP) by direct analysis in real time–time-of-flight-mass spectrometry (DART–TOF-MS) was developed. The efficiency of the method was evaluated by comparison with conventional gas chromatography–MS (GC–MS) and liquid chromatography–TOF-MS (LC–TOF-MS) techniques.ResultsDuring GC–MS analysis of t-Boc-MP, MP was generated in the injection port, which can lead to an analytical error. In the LC–TOF-MS spectrum, fragment ions were detected, which were generated by McLafferty rearrangement in the ion source. On the other hand, in the DART–TOF-MS analysis of t-Boc-MP, pyrolysis could be suppressed by using a micro-syringe injection method, and the fragment ions generated by McLafferty rearrangement were still observed. Moreover, protonated t-Boc-MP could be detected.ConclusionsHence, DART–TOF-MS provides a rapid and accurate method for the detection of t-Boc-MP, allowing suppression of the pyrolysis reaction and identification of both fragment ions and protonated t-Boc-MP. To our knowledge, this is the first report for detecting t-Boc-MP by MS techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.