Frequency-dependent model of the apparent radiation pattern has been extensively incorporated into engineering and scientific applications for high-frequency seismic waves, but distance-dependent properties have not yet been fully taken into account. We investigated the unified characteristics of frequency and distance dependences in both apparent P-and S-wave radiation patterns during local crustal earthquakes. Observed distortions of the apparent Pand S-wave radiation patterns could be simply modeled by using a function of the normalized hypocentral distance, which is a product of the wave number and hypocentral distance. This behavior suggests that major cause of distortion of the apparent radiation pattern is seismic wave scattering and diffraction within the heterogeneous crust. On the basis of observed normalized hypocentral distance dependency, we proposed a method for prediction of spatial distributions of maximum P-and S-wave amplitudes. Our method incorporating normalized hypocentral distance dependence of the apparent radiation pattern reproduced the observed spatial distributions of maximum P-and S-wave amplitudes over a wide frequency and distance ranges successfully.
The amplitudes of high-frequency seismic waves generated by local and/or regional earthquakes vary from site to site, even at similar hypocentral distances. It had been suggested that, in addition to local site effects (e.g., variable attenuation and amplification in surficial layers), complex wave propagation in inhomogeneous crustal media is responsible for this observation. To quantitatively investigate this effect, we performed observational, theoretical, and numerical studies on the characteristics of seismic amplitude fluctuations in inhomogeneous crust. Our observations of P-wave amplitude for small to moderately sized crustal earthquakes revealed that fluctuations in P-wave amplitude increase with increasing frequency and hypocentral distance, with large fluctuations showing up to ten-times difference between the largest and the smallest P-wave amplitudes. Based on our theoretical investigation, we developed an equation to evaluate the amplitude fluctuations of time-harmonic waves that radiated isotropically from a point source and propagated spherically in acoustic von Kármán-type random media. Our equation predicted relationships between amplitude fluctuations and observational parameters (e.g., wave frequency and hypocentral distance). Our numerical investigation, which was based on the finite difference method, enabled us to investigate the characteristics of wave propagation in both acoustic and elastic random inhomogeneous media using a variety of source time functions. The numerical simulations indicate that amplitude fluctuation characteristics differ a little between medium types (i.e., acoustic or elastic) or source time function durations. These results confirm the applicability of our analytical equation to practical seismic data analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.