Cloud Computing (CC) becomes a commonly available tool to enable quick, on-demand services from a shared pool of configurable computing resources which can be allocated and utilized. Resource provisioning is a major issue in CC environment which ensures guaranteed outcomes on the applications related to CC. This study introduces an efficient fuzzy c-means clustering (FCM) with hybrid grey wolf optimization (GWO) and differential evolution (DE) algorithm, called FCM-GWODE for resource provisioning in cloud environment. The aim of the FCM-GWODE technique is to allocate the resources in such a way that the resource utilization can be accomplished. In addition, the FCM technique with metaheuristics is applied to partition the resources and scalable searching process can be minimized. Moreover, the GWODE algorithm is derived by resolving the local optima issue of the GWO and improve the population diversity using DE. A comprehensive simulation process takes place using CloudSim tool and the results are inspected interms of several evaluation metrics. The simulation results highlighted the supremacy of the FCM-GWODE technique over the other methods.
The Internet of Things (IoT) is an ever-expanding network of interconnected devices that enables various applications, such as smart homes, smart cities, and industrial automation. However, with the proliferation of IoT devices, security risks have increased significantly, making it necessary to develop effective intrusion detection systems (IDS) for IoT networks. In this paper, we propose an efficient IDS for complex IoT environments based on convolutional neural networks (CNNs). Our approach uses IoT traffics as input to our CNN architecture to capture representational knowledge required to discriminate different forms of attacks. Our system achieves high accuracy and low false positive rates, even in the presence of complex and dynamic network traffic patterns. We evaluate the performance of our system using public datasets and compare it with other cutting-edge IDS approaches. Our results show that the proposed system outperforms the other approaches in terms of accuracy and false positive rates. The proposed IDS can enhance the security of IoT networks and protect them against various types of cyber-attacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.