Photoacoustic (PA) imaging has been considered an attractive imaging modality for sensitive and in-depth imaging of biomolecules with a high resolution in vivo. PA imaging probes utilizing fluorescence dyes, including indocyanine green (ICG), have been proposed to enhance PA signal intensity. On the other hand, nanomicelles modified with polysarcosine (PSar), a biocompatible hydrophilic polymer, on their surface have previously achieved rapid tumor uptake, suggesting active transport of PSar into tumor tissues. Thus, we hypothesized that PSar-based materials might be utilized as diagnostic probes for targeting tumors and therefore evaluated the potential of PSar labeled with an ICG derivative, ICG-PSar, as a PA imaging probe for targeting cancer. In this study, ICG-PSars with differing molecular weights (10, 20, and 30 kDa) were synthesized. In vitro cellular uptake studies using ICG-PSar demonstrated rapid uptake in colon26 tumor cells partially via macropinocytosis-mediated endocytosis. In vivo fluorescence imaging and biodistribution study indicated that ICG-PSar30k exhibited high accumulation in the tumor (8.4% dose/g), with high tumor-to-blood ratios reaching 4.6 at 24 h post injection of the probe. Finally, in vivo PA imaging studies showed that PA signal increased in tumors (251%) but not in blood vessels, achieving high contrast tumor imaging at 24 h after ICG-PSar30k probe injection. These results suggest that ICG-PSar has potential as a tumor-targeting PA imaging probe.
Photoacoustic (PA) imaging has emerged as a noninvasive diagnostic method which detects ultrasonic waves thermoelastically induced by optical absorbers irradiated with laser. For tumor diagnosis, PA contrast agent has been proposed to enhance the PA effect for detecting tumors sensitively. Here, we prepared a human serum albumin (HSA) conjugated with indocyanine green (ICG) as a PA contrast agent allowing enhanced permeability and retention effect for sensitive tumor imaging. The feasibility of PA imaging with HSA-ICG to detect allografted tumors was evaluated in tumor-bearing mice. In vivo fluorescence imaging and radiolabeled biodistribution study showed that the biodistribution dramatically changed as the number of ICG bound to HSA increased, and the maximum accumulation of ICG was achieved when around three ICG molecules were loaded on an HSA. In vivo PA imaging demonstrated a tumor-selective and dose-dependent increase of PA signal intensity in mice injected with HSA-ICG (R2 = 0.88, 387% increase for HSA-ICG, 104 nmol ICG). In conclusion, HSA-ICG clearly visualized the allografted tumors with high tumor-to-background ratios having high quantitative and spatial resolution for the sensitive PA imaging of tumors. HSA-ICG could be useful as a favorable contrast agent for PA tumor imaging for the management of cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.