The application of various nanocarrier systems was widely explored in the field of pharmaceuticals to achieve better drug encapsulation and delivery. The aim of this study was to encapsulate lidocaine in alginate-based o/w nanocarriers based on the type of oil (i.e., solid or liquid), using a nanoemulsion template prepared by ultrasound-assisted phase inversion temperature (PIT) approach. The nanoemulsion template was initially prepared by dissolving lidocaine in the oil phase and surfactant and alginate in the aqueous phase, and keeping the PIT at around 85 °C, accompanied by gradual water dilution at 25 °C, to initiate the formation of nanoparticles (o/w) with the aid of low frequency ultrasound. The composition and concentration of the oil phase had a major impact on the particle size and led to an increase in the size of the droplet. The lipids that showed a higher drug solubility also showed higher particle size. On the other hand, increasing the concentration of surfactant decreases the size of the droplet before the concentration of the surfactant exceeds the limit, after which the size of the particle increases due to the aggregates that could be produced from the excess surfactant. The method used produced nanoemulsions that maintained nano-sized droplets < 50 nm, over long-term storage. Our findings are important for the design of nanocarrier systems for the encapsulation of lipophilic molecules.
Transdermal drug delivery of lidocaine is a good choice for local anesthetic delivery. Microemulsions have shown great effectiveness for the transdermal transport of lidocaine. Oil-in-water nanoemulsions are particularly suitable for encapsulation of lipophilic molecules because of their ability to form stable and transparent delivery systems with good skin permeation. However, fabrication of nanoemulsions containing lidocaine to provide an extended local anesthetic effect is challenging. Hence, the aim of this study was to address this issue by employing alginate-based o/w nanocarriers using nanoemulsion template that is prepared by combined approaches of ultrasound and phase inversion temperature (PIT). In this study, the influence of system composition such as oil type, oil and surfactant concentration on the particle size, in vitro release and skin permeation of lidocaine nanoemulsions was investigated. Structural characterization of lidocaine nanoemulsions as a function of water dilution was done using DSC. Nanoemulsions with small droplet diameters (d < 150 nm) were obtained as demonstrated by dynamic light scattering (DLS) and cryo-TEM. These nanoemulsions were also able to release 90% of their content within 24-h through PDMS and pig skin and able to the drug release over a 48-h. This extended-release profile is highly favorable in transdermal drug delivery and shows the great potential of this nanoemulsion as delivery system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.