Intrauterine growth restriction (IUGR) is defined as a condition in which the fetus does not reach its genetically given growth potential, resulting in low birth weight. IUGR is an important cause of perinatal morbidity and mortality, thus contributing substantially to medically indicated preterm birth in order to prevent fetal death. We subjected umbilical cord blood serum samples either belonging to the IUGR group (n = 15) or to the control group (n = 15) to fractionation by affinity chromatography using a bead system with hydrophobic interaction capabilities. So prepared protein mixtures were analyzed by MALDI-TOF mass spectrometric profiling. The six best differentiating ion signals at m/z 8205, m/z 8766, m/z 13 945, m/z 15 129, m/z 15 308, and m/z 16 001 were collectively assigned as IUGR proteome signature. Separation confidence of our IUGR proteome signature reached a sensitivity of 0.87 and a specificity of 0.93. Assignment of ion signals in the mass spectra to specific proteins was substantiated by SDS-PAGE in conjunction with peptide mass fingerprint analysis of cord blood serum proteins. One constituent of this proteome signature, apolipoprotein C-III(0) , a derivative lacking glycosylation, has been found more abundant in the IUGR cord blood serum samples, irrespective of gestational age. Hence, we suggest apolipoprotein C-III(0) as potential key-marker of the here proposed IUGR proteome signature, as it is a very low-density lipoprotein (VLDL) and high-density lipoprotein (HDL) member and as such involved in triglyceride metabolism that itself is discussed as being of importance in IUGR pathogenesis. Our results indicate that subtle alterations in protein glycosylation need to be considered for improving our understanding of the pathomechanisms in IUGR.
Mass spectrometric profiling of intact serum proteins, i.e. determination of relative protein abundance differences, was performed using two different serum sample preparation methods: one with frozen and thawed serum, the other with at room temperature deposited and dried serum. Since in a typical clinical setting freezing of serum is difficult to achieve, sampling at room temperature is preferred and can be met when using the Noviplex™ card system. Once deposited and dried, serum proteins can be stored and shipped at room temperature. After resolubilization of serum proteins from “dried serum spots”, mass spectra of high quality have been recorded comparable to those that were obtained using fresh-frozen and subsequently thawed serum samples. Differentiation between patients with intrauterine growth restriction and control individuals was achievable, independent from the sample work-up procedure. Having at hand a reliable and robust method for serum storage and shipment which works at room temperature bridges the gap between the clinics and the protein analysis laboratory. Our novel serum handling protocol reduces costs for both, storage and shipping, and ultimately enables clinical risk assessment based on mass spectrometric determination of intact protein abundance profiles.
These results indicate the potential of liquid chromatography-multiple-reaction-monitoring mass spectrometry to become of clinical importance in the future for intrauterine growth restriction risk assessment based on maternal apolipoprotein B100 serum levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.