Acquired heterotopic ossification (HO) is a painful and debilitating disease characterized by extraskeletal bone formation after injury. The exact pathogenesis of HO remains unknown. Here we show that TGF-β initiates and promotes HO in mice. We find that calcified cartilage and newly formed bone resorb osteoclasts after onset of HO, which leads to high levels of active TGF-β that recruit mesenchymal stromal/progenitor cells (MSPCs) in the HO microenvironment. Transgenic expression of active TGF-β in tendon induces spontaneous HO, whereas systemic injection of a TGF-β neutralizing antibody attenuates ectopic bone formation in traumatic and BMP-induced mouse HO models, and in a fibrodysplasia ossificans progressive mouse model. Moreover, inducible knockout of the TGF-β type II receptor in MSPCs inhibits HO progression in HO mouse models. Our study points toward elevated levels of active TGF-β as inducers and promoters of ectopic bone formation, and suggest that TGF-β might be a therapeutic target in HO.
Osteoarthritis (OA) causes the destruction of joints. Its pathogenesis is still under investigation, and there is no effective disease-modifying therapy. Here, we report that elevated cyclooxygenase-2 (COX-2) expression in the osteocytes of subchondral bone causes both spontaneous OA and rheumatoid arthritis (RA). The knockout of COX-2 in osteocytes or treatment with a COX-2 inhibitor effectively rescues the structure of subchondral bone and attenuates cartilage degeneration in spontaneous OA (STR/Ort) mice and tumor necrosis factor-α transgenic RA mice. Thus, elevated COX-2 expression in subchondral bone induces both OA-associated and RA-associated joint cartilage degeneration. The inhibition of COX-2 expression can potentially modify joint destruction in patients with arthritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.