Wireless sensor network (WSN) is used to sense the environment, collect the data, and further transmit it to the base station (BS) for analysis. A synchronized tree-based approach is an efficient approach to aggregate data from various sensor nodes in a WSN environment. However, achieving energy efficiency in such a tree formation is challenging. In this research work, an algorithm named fuzzy attribute-based joint integrated scheduling and tree formation (FAJIT) technique for tree formation and parent node selection using fuzzy logic in a heterogeneous network is proposed. FAJIT mainly focuses on addressing the parent node selection problem in the heterogeneous network for aggregating different types of data packets to improve energy efficiency. The selection of parent nodes is performed based on the candidate nodes with the minimum number of dynamic neighbors. Fuzzy logic is applied in the case of an equal number of dynamic neighbors. In the proposed technique, fuzzy logic is first applied to WSN, and then min–max normalization is used to retrieve normalized weights (membership values) for the given edges of the graph. This membership value is used to denote the degree to which an element belongs to a set. Therefore, the node with the minimum sum of all weights is considered as the parent node. The result of FAJIT is compared with the distributed algorithm for Integrated tree Construction and data Aggregation (DICA) on various parameters: average schedule length, energy consumption data interval, the total number of transmission slots, control overhead, and energy consumption in the control phase. The results demonstrate that the proposed algorithm is better in terms of energy efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.