Several experimental studies have shown that rocking shallow foundations have beneficial seismic performance features: recentering and energy dissipation with little damage. A new publicly available database, “FoRDy” (Foundation Rocking—Dynamic), summarizes the results of dynamic physical model tests of single-degree-of-freedom-like structures supported on rocking foundations. It contains data from five centrifuge and three 1- g shaking table test series that were conducted at experimental facilities in the United States, Greece, and Japan. The database includes 200 model “case histories” that span a wide range of model sizes, soil and structure properties, and seismic excitations. It is compiled as the first step toward building a comprehensive dynamic rocking foundation database, and it has the potential to grow in the future. To illustrate its usefulness, the data are used to show example correlations between the peak drift ratio demand and selected ground motion intensity measures. The results suggest that peak ground velocity (PGV), peak ground displacement (PGD), and the geometric mean of the linear spectral displacement over the period range of 0.2–3 times the initial natural period predict the peak drift ratio response reliably.
ASCE 41-13 supports three methods of modeling the soil-structure interaction for rocking footings as components of a foundation-building system: Method 1 uses uncoupled moment, shear, and axial springs; Method 2 uses a nonlinear gapping bed of springs; and Method 3 is used for structural footings that are flexible relative to the underlying soil. New component action tables in ASCE 41-13 provide modeling parameters and acceptance criteria for nonlinear and linear analysis of shallow foundation components. The values in the component action tables for nonlinear procedures were largely based upon analysis of foundation performance in model tests on rocking foundations. The primary measure to assess foundation performance is residual settlement or uplift. The acceptance criteria for linear analysis procedures ( m-factors) were derived from the allowable rotations for nonlinear procedures. A design example is presented in an online Appendix to illustrate differences between the current and previous versions of ASCE 41 and ASCE 31.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.