The cytokines IL-6, IL-1b, TGF-b, and IL-23 are considered to promote Th17 commitment. Langerhans cells (LC) represent DC in the outer skin layers of the epidermis, an environment extensively exposed to pathogenic attack.
The betaherpesvirus human cytomegalovirus (HCMV) encodes several molecules that block antigen presentation by the major histocompatibility complex (MHC) proteins. Humans also possess one other family of antigen-presenting molecules, the CD1 family; however, the effect of HCMV on CD1 expression is unknown. The majority of CD1 molecules are classified on the basis of homology as group 1 CD1 and are present almost exclusively on professional antigen-presenting cells such as dendritic cells, which are a major target for HCMV infection and latency. We have determined that HCMV encodes multiple blocking strategies targeting group 1 CD1 molecules. CD1 transcription is strongly inhibited by the HCMV interleukin-10 homologue cmvIL-10. HCMV also blocks CD1 antigen presentation posttranscriptionally by the inhibition of CD1 localization to the cell surface. This function is not performed by a known HCMV MHC class I-blocking molecule and is substantially stronger than the blockage induced by herpes simplex virus type 1. Antigen presentation by CD1 is important for the development of the antiviral immune response and the generation of mature antigenpresenting cells. HCMV present in antigen-presenting cells thus blunts the immune response by the blockage of CD1 molecules.
Langerhans cells (LCs) are suspected to initiate inflammatory immune responses to contact allergens and pathogenic bacteria. In chronic infectious diseases, programmed death ligand (PD-L) 1 exhibits both inhibitory and costimulatory functions on T cell-mediated activation and tolerance. Here, we investigated the effects of contact allergens and bacterial stimuli on PD-L1 expression in LCs and the effects of altered PD-L1 expression on cytokine release of subsequently cocultured T cells. Monocyte-derived LCs (MoLCs), LCs, and skin sections of patients suffering from allergic contact dermatitis were challenged with nickel and then analyzed for PD-L1 expression by confocal laser scanning microscopy and flow cytometry. In blocking experiments, we found that the release of Th cell specific cytokines was dependent on both stimulation of LCs and inhibition of PD-L1-PD-1 interactions. Stimulation with peptidoglycan (PGN) or lipopolysaccharide (LPS) and blockage of PD-L1 with a specific antibody triggered the release of high levels of IL-17, IL-22, TNF-α, and IFN-γ in CD4+T cells. If nickel was used as a stimulus, blockage of PD-L1 led to high amounts of TNF-α and IL-22. A closer look revealed PD-L1-dependent upregulation of IL-17 secretion in FACS-sorted CCR6+/CCR4+ T memory cells. In the presence of anti-PD-L1, PGN induced secretion of IFN-γ and IL-17 in total CCR6+ cells, while nickel triggered secretion of IFN-γ and IL-17 exclusively in CCR6+/CCR4+ cells. Our findings suggest that PD-L1 on LCs plays a crucial role in type IV allergic reactions and in response to bacterial stimuli by controlling the nature of inflammatory Th cell responses.
BackgroundSegmental duplications (SDs) are not evenly distributed along chromosomes. The reasons for this biased susceptibility to SD insertion are poorly understood. Accumulation of SDs is associated with increased genomic instability, which can lead to structural variants and genomic disorders such as the Williams-Beuren syndrome. Despite these adverse effects, SDs have become fixed in the human genome. Focusing on chromosome 7, which is particularly rich in interstitial SDs, we have investigated the distribution of SDs in the context of evolution and the three dimensional organisation of the chromosome in order to gain insights into the mutual relationship of SDs and chromatin topology.ResultsIntrachromosomal SDs preferentially accumulate in those segments of chromosome 7 that are homologous to marmoset chromosome 2. Although this formerly compact segment has been re-distributed to three different sites during primate evolution, we can show by means of public data on long distance chromatin interactions that these three intervals, and consequently the paralogous SDs mapping to them, have retained their spatial proximity in the nucleus. Focusing on SD clusters implicated in the aetiology of the Williams-Beuren syndrome locus we demonstrate by cross-species comparison that these SDs have inserted at the borders of a topological domain and that they flank regions with distinct DNA conformation.ConclusionsOur study suggests a link of nuclear architecture and the propagation of SDs across chromosome 7, either by promoting regional SD insertion or by contributing to the establishment of higher order chromatin organisation themselves. The latter could compensate for the high risk of structural rearrangements and thus may have contributed to their evolutionary fixation in the human genome.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-537) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.