In recent years, there has been a growing interest for the experimental analysis in the field of evolutionary algorithms. It is noticeable due to the existence of numerous papers which analyze and propose different types of problems, such as the basis for experimental comparisons of algorithms, proposals of different methodologies in comparison or proposals of use of different statistical techniques in algorithms' comparison.In this paper, we focus our study on the use of statistical techniques in the analysis of evolutionary algorithms' behaviour over optimization problems. A study about the required conditions for statistical analysis of the results is presented by using some models of evolutionary algorithms for real-coding optimization. This study is conducted in two ways: single-problem analysis and multiple-problem analysis. The results obtained state that a parametric statistical analysis could not be appropriate specially when we deal with multiple-problem results. In multiple-problem analysis, we propose the use of non-parametric statistical tests given that they are less restrictive than parametric ones and they can be used over small size samples of results. As a case study, we analyze the published results for the algorithms presented in the
The main real-coded genetic algorithm (RCGA) research effort has been spent on developing efficient crossover operators. This study presents a taxonomy for this operator that groups its instances in different categories according to the way they generate the genes of the offspring from the genes of the parents. The empirical study of representative crossovers of all the categories reveals concrete features that allow the crossover operator to have a positive influence on RCGA performance. They may be useful to design more effective crossover models.
Evolutionary algorithms are adaptive methods based on natural evolution that may be used for search and optimization. As data reduction in knowledge discovery in databases (KDDs) can be viewed as a search problem, it could be solved using evolutionary algorithms (EAs). In this paper, we have carried out an empirical study of the performance of four representative EA models in which we have taken into account two different instance selection perspectives, the prototype selection and the training set selection for data reduction in KDD. This paper includes a comparison between these algorithms and other nonevolutionary instance selection algorithms. The results show that the evolutionary instance selection algorithms consistently outperform the nonevolutionary ones, the main advantages being: better instance reduction rates, higher classification accuracy, and models that are easier to interpret.
Abstract-A major problem in the use of genetic algorithms is premature convergence, a premature stagnation of the search caused by the lack of diversity in the population. One approach for dealing with this problem is the distributed genetic algorithm model. Its basic idea is to keep, in parallel, several subpopulations that are processed by genetic algorithms, with each one being independent of the others. Furthermore, a migration mechanism produces a chromosome exchange between the subpopulations. Making distinctions between the subpopulations by applying genetic algorithms with different configurations, we obtain the so-called heterogeneous distributed genetic algorithms. These algorithms represent a promising way for introducing a correct exploration/exploitation balance in order to avoid premature convergence and reach approximate final solutions. This paper presents the gradual distributed real-coded genetic algorithms, a type of heterogeneous distributed real-coded genetic algorithms that apply a different crossover operator to each subpopulation. The importance of this operator on the genetic algorithm's performance allowed us to differentiate between the subpopulations in this fashion. Using crossover operators presented for real-coded genetic algorithms, we implement three instances of gradual distributed real-coded genetic algorithms. Experimental results show that the proposals consistently outperform sequential real-coded genetic algorithms and homogeneous distributed realcoded genetic algorithms, which are equivalent to them and other mechanisms presented in the literature. These proposals offer two important advantages at the same time: better reliability and accuracy.Index Terms-Crossover operator, distributed genetic algorithms, multiresolution, premature convergence, selective pressure.
This paper presents a real-coded memetic algorithm that applies a crossover hill-climbing to solutions produced by the genetic operators. On the one hand, the memetic algorithm provides global search (reliability) by means of the promotion of high levels of population diversity. On the other, the crossover hill-climbing exploits the self-adaptive capacity of real-parameter crossover operators with the aim of producing an effective local tuning on the solutions (accuracy). An important aspect of the memetic algorithm proposed is that it adaptively assigns different local search probabilities to individuals. It was observed that the algorithm adjusts the global/local search balance according to the particularities of each problem instance. Experimental results show that, for a wide range of problems, the method we propose here consistently outperforms other real-coded memetic algorithms which appeared in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.