We report on the modification of graphene oxide (GO) with polyvinylalcohol (PVA) leading to the mechanical improvement of GO based materials. First, GO was covalently functionalised with PVA by esterification of carboxylic groups on GO with hydroxyl groups of PVA resulting in functionalised f-(PVA)GO. This was carried out for PVA of six different molecular weights. This functionalised graphene oxide could be formed into a paper-like material by vacuum filtration.Papers prepared from f-(PVA)GO showed significant increases in mechanical properties compared to those prepared with GO or with simple mixtures of GO and PVA. The best performance was achieved for PVA functional groups with molecular weights between 50 and 150 kg/mol. Improvements in Young's moduli of 60% and tensile strength of 400% were observed relative to GO-only paper. The improved mechanical properties are attributed to enhanced inter-flake stress transfer due to the covalently bonded PVA. Second, functionalised f-(PVA)GO was used as filler in
Composites of thermoplastic polyurethane (TPU) and ultra-thin graphite (UTG) with concentrations ranging from 0.5 to 3 wt% were prepared using a solution compounding strategy. Substantial reinforcing effects with increased loadings are achieved. Compared to neat TPU, values for storage modulus and shear viscosity are enhanced by 300 % and 150 %, respectively, for UTG concentrations of 3 wt%. Additionally, an enhancement of thermal properties is accomplished. The crystallization temperature and thermal stability increased by 30 ºC and 10 ºC, respectively, compared to neat TPU. Controlling the oxidation degree, thus offers further possibilities to obtain composites with tailored properties. The presented approach is straightforward, leads to homogeneous TPU-UTG composites with improved materials properties and is especially suitable for commercial UTG materials and further up-scaled production.
Simultaneous decomposition and reduction of a Pd(2+) complex in the presence of graphene oxide (GO) lead to the formation of Pd(0)-nanoparticles (Pd-NPs) with average sizes of 4 nm firmly anchored on reduced graphene oxide (RGO) sheets. The Pd-NP/RGO hybrids exhibited remarkable catalytic activity and selectivity in mild hydrogenation reactions where the acidic properties of RGO play an active role and may act as an important game-changer.
We here present an effective strategy to prepare enhanced composites using poly(vinyl alcohol) (PVA) and multiwalled carbon nanotubes (MWCNT). It contains two essential steps. First, the elaboration of homogeneous aqueous MWCNT dispersions and the selection of the most effective dispersing agent. In a sequential dispersion protocol for seven common dispersants, including surfactants and polymers, the dispersion quality and dispersion ability, independent of the intrinsic nature of the dispersing agent were established using zeta-potential and UV-Vis-spectroscopy. Second, the combination of the most effective dispersing agent, namely dodecylbenzenesulfonate (SDBS) with a polymer dispersant of high affinity towards the PVA matrix, namely polyvinylpyrrolidone (PVP). This resulted in homogeneous PVA-MWCNT composites with significantly improved glass transition temperature by up to 12 ºC as a function of the sequential order of dispersant addition. The presented dispersion strategy is straightforward and thus may provide a fast, reliable and general guide for fabricating nanotube composites with improved performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.