Thermal activation of buried p-type GaN is investigated in metal-organic chemical vapor deposition-regrown vertical structures, where the buried p-GaN is re-passivated by hydrogen during regrowth. The activation is performed by exposing the buried p-GaN through etched sidewalls and characterized by reverse breakdown measurements on vertical diodes. The effect of the n-type doping level on the activation has been observed. After 725 C/30 min annealing in a dry air environment, the buried p-GaN with a regrown unintentionally-doped (UID) capping layer is sufficiently activated due to significant Mg-incorporation in the UID layer, allowing for hydrogen up-diffusion. With an additional regrown n þ-GaN capping layer (i.e., in n þ /i/p-n diodes), only lateral diffusion of H out of the exposed mesa sidewall is permitted. A critical lateral dimension between 10 and 20 lm is found for the n þ /i/p-n diodes, under which the buried p-GaN is sufficiently activated. The diodes with activated buried p-GaN achieved up to 1200 V breakdown voltage, indicating that over 28% of the Mg dopants is activated. The study demonstrates the effectiveness of sidewall p-GaN activation in achieving high breakdown voltage pertinent to GaN vertical power devices, while providing guidelines on the required device geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.