Bioprinting is one of several newly emerged tissue engineering strategies that hold great promise in alleviating of organ shortage crisis. To date, a range of living biological constructs have already been fabricated in vitro using this technology. However, an in vitro approach may have several intrinsic limitations regarding its clinical applicability in some cases. A possible solution is in vivo bioprinting, in which the de novo tissues/organs are to be directly fabricated and positioned at the damaged site in the living body. This strategy would be particularly effective in the treatment of tissues/organs that can be safely arrested and immobilized during bioprinting. Proof-of-concept studies on in vivo bioprinting have been reported recently, on the basis of which this paper reviews the current state-of-the-art bioprinting technologies with a particular focus on their advantages and challenges for the in vivo application.
In the treatment of closed tibial plafond fractures, both two-staged ORIF and LIFEF offer similar results. Patients undergo LIFEF carry significantly greater radiation exposure and higher superficial soft tissue infection rate (usually occurs on pin tract and does not affect the final outcomes).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.