Abstract-A method for calculating the Casimir force between large, complex 3D objects is presented. Difficulties have previously arisen in broadband multiscale calculation using CEM methods. To expand the range of problems that can be calculated, we use an integral equation, domain decomposition method (DDM) and argument principle to derive the Casimir force formula. The broadband integral equation DDM, which is the augmented equivalence principle algorithm (A-EPA), allows for an efficient broadband solution of large, complex objects. A-EPA subdivides a complex problem into separate smaller subproblems that are later recombined into a reduced matrix. This yields a reduced number of unknowns for complex structures making them feasible with modest computer resources. We demonstrate the advantages of the A-EPA by simulating large, finite, 3D, unaligned corrugated plates, which have previously only been modeled approximately as infinite plates using 2D techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.