Apoptosis is a universal and continuous event during tissue development, restoration, repair, and regeneration. Mounting evidence has demonstrated that apoptosis is essential for the activation of tissue regeneration. However, the underlying mechanism remains elusive. A striking development in recent years comes from research on extracellular vesicles (EVs) derived from apoptotic cells. During apoptosis, cells secrete vesicles of various sizes containing various components. Apoptotic cell-derived EVs (ApoEVs) have been found to transit to neighboring cells or cells in distant tissues through the circulation. These vesicles could act as containers to transmit the nucleic acid, protein, and lipid signals to target cells. ApoEVs have been shown to promote regeneration in the cardiovascular system, skin, bone, muscle, kidney, etc. Moreover, several specific signaling pathways mediating the anabolic effects of ApoEVs have been classified. In this review, we comprehensively discussed the latest findings on the function of ApoEVs in tissue regeneration and disease prevention. These findings may reveal unexpected clues regarding the regulatory network between cell death and tissue regeneration and suggest novel targets for regenerative medicine. The findings discussed here also raise the question whether and to what extent ApoEVs contribute to embryonic development. This question is all the more urgent because the exact functions of apoptotic events during numerous developmental processes are still largely unclear.
Due to the declined function of bone marrow mesenchymal stem cells (BMSCs), the repair of bone defects in the elderly is retarded. Elimination of senescent cells emerges as a promising strategy for treating age-related diseases. However, whether the local elimination of senescent BMSCs can promote bone regeneration in the elderly remains elusive. To tackle the above issue, we first screened out the specific senolytics for BMSCs and confirmed their effect of eliminating senescent BMSCs in vitro. Treatment with quercetin, which is determined the best senolytics for senescent BMSCs, efficiently removed senescent cells in the population. Moreover, the self-renewal capacity was restored as well as osteogenic ability of BMSCs after treatment. We then designed a microenvironment-responsive hydrogel based on the MMPs secreted by senescent cells. This quercetin-encapsulated hydrogel exhibited a stable microstructure and responsively released quercetin in the presence of senescence in vitro. In vivo, the quercetin-loaded hydrogel effectively cleared the local senescent cells and reduced the secretion of MMPs in the bone. Due to the removal of local senescent cells, the hydrogel significantly accelerated the repair of bone defects in the femur and skull of old rats. Taken together, our study revealed the role of removing senescent cells in bone regeneration and provided a novel therapeutic approach for bone defects in aged individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.