This work presents a cluster analysis approach aiming to determine distinct groups based on clinicopathological data from patients with breast cancer (BC). For this purpose, the clinical variables were considered: age at diagnosis, weight, height, lymph nodal invasion (LN), tumor-node-metastasis (TNM) staging and body mass index (BMI). Ward's hierarchical clustering algorithm was used to form specific groups. Based on this, BC patients were separated into four groups. The Kruskal-Wallis test was performed to assess the differences among the clusters. The intensity of the influence of variables on the prognosis of BC was also evaluated by calculating the Spearman's correlation. Positive correlations were obtained between weight and BMI, TNM and LN invasion in all analyzes. Negative correlations between BMI and height were obtained in some of the analyzes. Finally, a new correlation was obtained, based on this approach, between weight and TNM, demonstrating that the trophic-adipose status of BC patients can be directly related to disease staging.
self-examination (50%) the chance of longer delay was higher (OR= 3.2, 95%CI:1.6-6.1). ConClusions: GPs play an important role in the early detection of melanoma lesions, propagation of self-examination, awareness raising in the recognition of signs. The vigilance of GPs is especially important in case of patients with higherrisk and disorders in less visible places.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.