The Eurasian wild boar (Sus scrofa Linnaeus, 1758) was introduced into Argentina at the beginning of the twentieth century when individuals from Europe were taken to La Pampa province for hunting purposes. Starting from there, a dispersal process began due to the invasive characteristics of the species and to human-mediated translocations. The main objective of this study was to characterize for the first time, the phylogenetic relationships among wild boars from Argentina with those from Uruguay, Europe, Asia, and the Near East, along with diverse domestic pig breeds in order to corroborate the historical information about the origin of the local populations. To this end, we used mitochondrial Control Region and Cytochrome b sequences from sampled Argentinian wild boars and retrieved from GenBank. The results showed that the majority of the Argentinian wild boar populations descend from European lineages, in particular of the E1 clade, according to the historical records. Remarkably, the population of El Palmar National Park had Asian origin that could be attributed to hybridization with local domestic pigs or to unrecorded translocations. Finally, genetic diversity in Argentinian populations was lower than in Europe and Uruguay meaning that wild boar in Argentina is still under the influence of founder effect and has experienced minor genetic introgression from domestic pigs, representing in this sense a reservoir of the original wild boar genetic variability.
The aim of this work was to assess the temporal patterns in the community composition of phytoplankton (PCC) and bacterioplankton (BCC) in two interconnected and hypertrophic Pampean shallow lakes (Argentina). Factors shaping their community dynamics and community temporal covariations were also analysed. We performed 4 years of seasonal samplings (2012–2016) and communities were studied by Utermöhl approach (PCC) and Illumina MiSeq sequencing (BCC). We found marked seasonal variations in both communities, and inter-annual variations with decreasing microbial community similarities along the study. We also observed covariation in community-level dynamics among PCC and BCC within- and between-shallow lakes. The within-lake covariations remained positive and significant, while controlling for the effects of intrinsic (environmental) and extrinsic (temporal and meteorological) factors, suggesting a community coupling mediated by intrinsic biotic interactions. Algal-bacterial associations between different taxa of phytoplankton and bacterioplankton within each lake were also found. PCC was mainly explained by pure regional extrinsic (17–21%) and intrinsic environmental (8–9%) factors, while BCC by environmental (8–10%) and biotic interactions with phytoplankton (7–8%). Our results revealed that the influence of extrinsic regional factors can be channeled to bacterioplankton through both environmental (i.e. water temperature) and phytoplankton effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.