We have produced a living biomaterial by a symbiotic growth of the bacteria,Acetobacter aceti, and the microalgae,C. reinhardtii, which integratein situinto the produced bacterial cellulose gel.
Conventional flame retardant (FR) application processes for textiles involve aqueous processing which is resource-intensive in terms of energy and water usage. Recent research using sol-gel and layer-by-layer chemistries, while claimed to be based on more environmentally sustainable chemistry, still require aqueous media with the continuing problem of water management and drying processes being required. This paper outlines the initial forensic work to characterise commercially produced viscose/flax, cellulosic furnishing fabrics which have had conferred upon them durable flame retardant (FR) treatments using a novel, patented atmospheric plasma/Ultraviolet (UV) excimer laser facility for processing textiles with the formal name Multiplexed Laser Surface Enhancement (MLSE) system. This system (MTIX Ltd., Huddersfield, UK) is claimed to offer the means of directly bonding of flame retardant precursor species to the component fibres introduced either before plasma/UV exposure or into the plasma/UV reaction zone itself; thereby eliminating a number of wet processing cycles. Nine commercial fabrics, pre-impregnated with a semi-durable, proprietary FR finish and subjected to the MLSE process have been analysed for their flame retardant properties before and after a 40 • C 30 min water soak. For one fabric, the pre-impregnated fabric was subjected to a normal heat cure treatment which conferred the same level of durability as the plasma/UV-treated analogue. Thermogravimetric analysis (TGA) and limiting oxygen index (LOI) were used to further characterise their burning behaviour and the effect of the treatment on surface fibre morphologies were assessed. Scanning electron microscopy indicated that negligible changes had occurred to surface topography of the viscose fibres occurred during plasma/UV excimer processing.
Atmospheric plasma treatment can modify fabric surfaces without affecting their bulk properties. One recently developed, novel variant combines both plasma and UV laser energy sources as a means of energising fibre surfaces. Using this system, the two most commonly used fibres, cotton and polyester, have been studied to assess how respective fabric surfaces were influenced by plasma power dosage, atmosphere composition and the effects of the presence or absence of UV laser (308 nm XeCl) energy. Plasma/UV exposures caused physical and chemical changes on both fabric surfaces, which were characterised using a number of techniques including scanning electron microscopy (SEM), radical scavenging (using 2,2-diphenyl-1-picrylhydrazyl (DPPH)), thermal analysis (TGA/DTG, DSC and DMA), electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS). Other properties studied included wettability and dye uptake. Intermediate radical formation, influenced by plasma power and presence or absence of UV, was key in determining surface changes, especially in the presence of low concentrations of oxygen or carbon dioxide (20%) mixed with either nitrogen or argon. Increased dyeability with methylene blue indicated the formation of carboxyl groups in both exposed cotton and polyester fabrics. In the case of polyester, thermal analysis suggested increased cross-linking had occurred under all conditions.
Conventional flame retardant (FR) application processes for textiles involve aqueous processing which is resource intensive in terms of energy and water usage. Recent research using sol-gel and layer-by-layer chemistries, while claimed to be based on more environmentally-sustainable chemistry, still require aqueous media with the continuing problem of water management and drying processes being required. This paper outlines the initial forensic work to characterise commercially produced viscose/flax, cellulosic furnishing fabrics which have had conferred upon them durable flame retardant (FR) treatments using a novel, patented atmospheric plasma/UV excimer laser facility for processing textiles with the formal name - Multiplexed Laser Surface Enhancement (MLSE) system. This system (MTIX Ltd., UK), is claimed to offer the means of directly bonding of flame retardant precursor species to the component fibres introduced either before plasma/UV exposure or into the plasma/UV reaction zone itself, thereby eliminating a number of wet processing cycles. Nine commercial fabrics, pre-impregnated with a semi-durable, proprietary FR finish and subjected to the MLSE process have been analysed for their flame retardant properties before and after a 40 °C 30 min water soak. For one fabric, the pre-impregnated fabric was subjected to a normal heat cure treatment which conferred the same level of durability as the plasma/UV-treated analogue. TGA and LOI were used to further characterise their burning behaviour and the effect of the treatment on surface fibre morphologies were assessed. Scanning electron microscopy indicated that negligible changes had occurred to surface topography of the viscose fibres occurred during plasma/UV excimer processing.
Application of a combined atmospheric plasma/UV laser to cotton fabrics impregnated with selected non-durable flame retardants (FRs) has shown evidence of covalent grafting of the latter species on to cotton fibre surfaces. As a result, an increase in their durability to water-soaking for 30 min at 40 °C has been recorded. Based on previous research plasma gases comprising Ar80%/CO220% or N280%/O220% were used to pre-expose cotton fabric prior to or after FR impregnation to promote the formation of radical species and increased –COOH groups on surface cellulosic chains, which would encourage formation of FR-cellulose bonds. Analysis by scanning electron microscopy (SEM/EDX), X-ray photoelectron spectroscopy (XPS) and thermal analysis (TGA) suggested that organophosphorus- and nitrogen- containing flame retarding species in the presence of the silicon-containing molecules such as 3-aminopropyltriethoxy silane (APTS) resulted in formation of FR-S-O-cellulose links, which gave rise to post-water-soaking FR retentions > 10%. Similarly, the organophosphorus FR, diethyl N, N bis (2-hydroxyethyl) aminomethylphosphonate (DBAP), after plasma/UV exposure produced similar percentage retention values possibly via (PO).O.cellulose bond formation, While none of the plasmas/UV-treated, FR-impregnated fabrics showed self-extinction behaviour, although burning rates reduced and significant char formation was evident, it has been shown that FR durability may be increased using plasma/UV treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.