Novel computing technologies that imitate the principles of biological neural systems may offer low power consumption along with distinct cognitive and learning advantages. The development of reliable memristive devices capable of storing multiple states of information has opened up new applications such as neuromorphic circuits and adaptive systems. At the same time, the explosive growth of the printed electronics industry has expedited the search for advanced memory materials suitable for manufacturing flexible devices. Here, we demonstrate that solution-processed MoOx/MoS2 and WOx/WS2 heterostructures sandwiched between two printed silver electrodes exhibit an unprecedentedly large and tunable electrical resistance range from 10(2) to 10(8) Ω combined with low programming voltages of 0.1-0.2 V. The bipolar resistive switching, with a concurrent capacitive contribution, is governed by an ultrathin (<3 nm) oxide layer. With strong nonlinearity in switching dynamics, different mechanisms of synaptic plasticity are implemented by applying a sequence of electrical pulses.
SummaryThe RfaH protein controls the transcription of a specialized group of Escherichia coli and Salmonella operons that direct the synthesis, assembly and export of the lipopolysaccharide core, exopolysaccharide, F conjugation pilus and haemolysin toxin. RfaH is a specific regulator of transcript elongation; its loss increases transcription polarity in these operons without affecting initiation from the operon promoters. The operons of the RfaH-dependent regulon contain a short conserved 5Ј sequence, the ops element, deletion of which increases operon polarity to an extent similar to that caused by loss of RfaH. The ops element is also present upstream of polysaccharide gene clusters of Shigella flexneri, Yersinia enterocolitica, Vibrio cholerae and Klebsiella pneumoniae and the RP4 fertility operon of Pseudomonas aeruginosa, suggesting that this is a widely spread control system. The mechanistic coupling of RfaH and the ops element has been demonstrated in vitro and in vivo, and we suggest that the ops element recruits RfaH and potentially other factors to the RNA polymerase complex, modifying the complex to increase its processivity and allowing transcription to proceed over long distances.
Expression of the Escherichia coli hlyCABD operon encoding synthesis, maturation and export of haemolysin toxin was strongly dependent upon a 35 bp DNA sequence, spanning the element GGCGGTAG, located 2 kbp upstream. When the hly operon was placed under the control of the inducible tac promoter, expression remained dependent upon this element, when transcribed in its native orientation 3' of the promoter. The increase in ptac-directed transcription was strongest for the distal, export genes of the hly operon, and was particularly striking when ptac and the element were placed far upstream. The element did not influence transcript stability, and we suggest that it is a key component of a novel regulatory mechanism may suppresses transcription polarity within operons. The mechanism that be of widespread importance in bacterial gene expression because the 8 bp element is present in many Gram-negative species as an upstream component of operons encoding the production of toxins and the surface assembly of polysaccharides and components required for the conjugal transfer of DNA. We name it the ops element for operon polarity suppressor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.