Within the scope of European Commission FP7 project FACTOR, dedicated to combustor-turbine-interaction research, a clean-sheet design of a rotating turbine test rig featuring a non-reacting combustor simulator was created and built among the partners. German Aerospace Center DLR provided the operational facility NG-Turb to which the rig was adapted and was responsible for global rig integration and operation, also including aerodynamic probe measurements of the flow field. The rig and experimental set-up is described and post-processed results from probe traverses in several measurement planes are presented and discussed. Special attention is paid to the comparison and influence of two combustor-NGV clocking positions on the periodic turbine flow field, made possible by rig adaptation during the campaign. The strongly distorted and nonuniform turbine inlet flow created by the combustor simulator proved challenging for the probe measurements, but at the same time set a realistic boundary condition enabling the analysis of ‘CTI’ by flow structures migrating through the blade rows.
Reducing the uncertainties in the prediction of turbine inlet conditions is a crucial aspect to improve aero engine designs and further increase engine efficiencies. To meet constantly stricter emission regulations, lean burn combustion could play a key role for future engine designs. However, these combustion systems are characterized by significant swirl for flame stabilization and reduced cooling air mass flows. As a result, substantial spatial and transient variations of the turbine inlet conditions are encountered. To investigate the effect of the combustor on the high pressure turbine, a rotating cooled transonic high-pressure configuration has been designed and investigated experimentally at the DLR turbine test facility ‘NG-Turb’ in Göttingen, Germany. It is a rotating full annular 1.5 stage turbine configuration which is coupled to a combustor simulator. The combustor simulator is designed to create turbine inlet conditions which are hydrodynamically representative for a lean-burn aero engine. A detailed description of the test rig and its instrumentation as well as a discussion of the measurement results is presented in part I of this paper. Part II focuses on numerical modeling of the test rig to further extend the understanding of the measurement results. Integrated simulations of the configuration including combustor simulator and nozzle guide vanes are performed for leading edge and passage clocking position and the effect on the hot streak migration is discussed. The simulation and experimental results at the combustor-turbine interface are compared showing a good overall agreement. The relevant flow features are correctly predicted in the simulations, proving the suitability of the numerical model for application to integrated combustor-turbine interaction analysis.
Following the industrial trend of increasingly integrative design and analysis of the combustorturbine interface, the EC FP7 project FACTOR was launched many years ago. The project ended in late 2017 after successful completion of the experimental test campaign involving blank-sheet design rotating turbine rig hardware, which was assembled, integrated and operated in DLR's turbine test facility NG-Turb in Göttingen, Germany. This paper highlights the DLR contribution to FACTOR including the 1.5 stage turbine rig's mechanical design, instrumentation and integration as well as final part assembly to a working rig. Additionally, DLR was responsible for rig operation and overall measurement campaign fulfilment including the acquisition of static pressure and temperature data as well as aerothermal 5-hole-probe traverses in different measurement planes. The implemented combustor simulator created a characteristic flow profile to and through the turbine with strongly varying flow angles and temperatures, that posed a challenge for the applied measurement techniques. NOMENCLATURE
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.