SummaryWe have increased the productivity and yield of potato (Solanum tuberosum) by developing a novel method to enhance photosynthetic carbon fixation based on expression of a polyprotein (DEFp) comprising all three subunits (D, E and F) of Escherichia coli glycolate dehydrogenase (GlcDH). The engineered polyprotein retained the functionality of the native GlcDH complex when expressed in E. coli and was able to complement mutants deficient for the D, E and F subunits. Transgenic plants accumulated DEFp in the plastids, and the recombinant protein was active in planta, reducing photorespiration and improving CO 2 uptake with a significant impact on carbon metabolism. Transgenic lines with the highest DEFp levels and GlcDH activity produced significantly higher levels of glucose (5.8-fold), fructose (3.8-fold), sucrose (1.6-fold) and transitory starch (threefold), resulting in a substantial increase in shoot and leaf biomass. The higher carbohydrate levels produced in potato leaves were utilized by the sink capacity of the tubers, increasing the tuber yield by 2.3-fold. This novel approach therefore has the potential to increase the biomass and yield of diverse crops.
The development of low-alkaloid (LA) tobacco varieties is an important target in the tobacco breeding industry. However, LA Burley 21 plants, in which the Nic1 and Nic2 loci controlling nicotine biosynthesis are deleted, are characterized by impaired leaf maturation that leads to poor leaf quality before and after curing. K E Y W O R D Sethylene, inhibition of biosynthesis, maturation, nic1/nic2 mutation, nicotine, ornithine
Transient expression systems allow the rapid production of recombinant proteins in plants. Such systems can be scaled up to several hundred kilograms of biomass, making them suitable for the production of pharmaceutical proteins required at short notice, such as emergency vaccines. However, large‐scale transient expression requires the production of recombinant Agrobacterium tumefaciens strains with the capacity for efficient gene transfer to plant cells. The complex media often used for the cultivation of this species typically include animal‐derived ingredients that can contain human pathogens, thus conflicting with the requirements of good manufacturing practice (GMP). We replaced all the animal‐derived components in yeast extract broth (YEB) cultivation medium with soybean peptone, and then used a design‐of‐experiments approach to optimize the medium composition, increasing the biomass yield while maintaining high levels of transient expression in subsequent infiltration experiments. The resulting plant peptone Agrobacterium medium (PAM) achieved a two‐fold increase in OD600 compared to YEB medium during a 4‐L batch fermentation lasting 18 h. Furthermore, the yields of the monoclonal antibody 2G12 and the fluorescent protein DsRed were maintained when the cells were cultivated in PAM rather than YEB. We have thus demonstrated a simple, efficient and scalable method for medium optimization that reduces process time and costs. The final optimized medium for the cultivation of A. tumefaciens completely lacks animal‐derived components, thus facilitating the GMP‐compliant large‐scale transient expression of recombinant proteins in plants.
Increasing the productivity of crops is a major challenge in agricultural research. Given that photosynthetic carbon assimilation is necessary for plant growth, enhancing the efficiency of photosynthesis is one strategy to boost agricultural productivity. The authors attempted to increase the photosynthetic efficiency and biomass of tobacco plants by expressing individual components of the Chlamydomonas reinhardtii carbon concentration mechanism (CCM) and integrating them into the chloroplast. Independent transgenic varieties are generated accumulating the carbonic anhydrase CAH3 in the thylakoid lumen or the bicarbonate transporter LCIA in the inner chloroplast membrane. Independent homozygous transgenic lines showed enhanced CO uptake rates (up to 15%), increased photosystem II efficiency (by up to 18%), and chlorophyll content (up to 19%). Transgenic lines produced more shoot biomass than wild-type and azygous controls, and accumulated more carbohydrate and amino acids, reflecting the higher rate of photosynthetic CO fixation. These data demonstrate that individual algal CCM components can be integrated into C plants to increase biomass, suggesting that transgenic lines combining multiple CCM components could further increase the productivity and yield of C crops.
Aflatoxin-producing fungi can contaminate plants and plant-derived products with carcinogenic secondary metabolites that present a risk to human and animal health. In this study, we investigated the effect of antimicrobial peptides on the major aflatoxigenic fungi Aspergillus flavus and A. parasiticus. In vitro assays with different chemically-synthesized peptides demonstrated that the broad-spectrum peptide thanatin from the spined soldier bug (Podisus maculiventris) had the greatest potential to eliminate aflatoxigenic fungi. The minimal inhibitory concentrations of thanatin against A. flavus and A. parasiticus were 3.13 and 12.5 µM, respectively. A thanatin cDNA was subsequently cloned in a plant expression vector under the control of the ubiquitin-1 promoter allowing the recombinant peptide to be directed to the apoplast in transgenic maize plants. Successful integration of the thanatin expression cassette was confirmed by PCR and expression was demonstrated by semi-quantitative RT-PCR in transgenic maize kernels. Infection assays with maize kernels from T1 transgenic plants showed up to three-fold greater resistance against Aspergillus spp. infections compared to non-transgenic kernels. We demonstrated for the first time that heterologous expression of the antimicrobial peptide thanatin inhibits the growth of Aspergillus spp. in transgenic maize plants offering a solution to protect crops from aflatoxin-producing fungi and the resulting aflatoxin contamination in the field and under storage conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.