This work analyses a set of perhydrous coals (mainly composed of huminite/vitrinite maceral group) in order to determine the inter-relations between the hydrogen content and the modifications in the coal structure at a molecular level. The study involves the direct solid state characterisation of the coal combined with the analysis of representative fragments of the coal network obtained through flash-pyrolysis. The perhydrous character of the coals is not reflected either in the aliphatic hydrogen concentration (from FTIR data) or by the presence of straight-chain aliphatic moieties in the pyrolysates. This structural study shows that perhydrous coals contain mainly aromatic structures with 1-2 rings and a very small concentration of aromatic rings of large size. In agreement with this, phenol and alkyl phenols are the most prominent degradation products whereas other aromatic compounds (mainly benzene and naphthalene derivatives) are minor and probably evaporative compounds. The major structural elements in the samples studied are simple phenols with a preponderance of substituted para alkyl. The results obtained show that the processes of hydrogen enrichment affect the reactions of aromatisation and condensation. During the natural evolution of the perhydrous coals the transformations of the oxygenated functionalities in the lignin precursor seem to have taken place without the parallel structural reorganisation of the lignin framework responsible for the formation of polycyclic aromatic systems. As a result, the chemical structure of perhydrous vitrinites in coals is substantially modified with respect to that described in 'normal' coals. The results obtained also indicate that the source of hydrogen content and the effect that it has during the subsequent evolution process of the coals, affects the chemical structure of the perhydrous vitrinite and hence its properties and behaviour.
The present work analyses the changes in the chemical structure of a perhydrous coal during its thermal evolution at different temperatures in an open-medium pyrolysis system. The results obtained were compared with those described for non-perhydrous coals in order to establish the effect of the substances assimilated by the coal structure (hydrocarbon/oil-like substances) on the thermal evolution of the coal. The transformation ratio at each stage of thermal treatment was determined and the chemical-structural characterisation of the resultant products was performed. Changes in textural and microtextural properties associated with structural modifications during the evolution were also tested. The results obtained show that this perhydrous coal develops a specific evolution pathway different from that followed by non-perhydrous coals with a normal H/C ratio. The substances assimilated by the perhydrous coal cannot be easily and totally released from its structure so that they can be only partially removed after thermal treatment. Thus, the treatment debilitates the interactions between the substances and the coal matrix in addition to weakening and cracking the matrix during the thermal process. The increase in temperature also leads to the conversion of some of the heavy assimilated substances into lighter compounds. However, the assimilated substances are present even at high temperatures of the thermal process, providing hydrogen which has the effect of stabilising the radicals originated during the pyrolysis and improving the fluidity properties in the reacting medium
A bacterial strain, OHA11 T , was isolated during the course of a study of phosphate-solubilizing bacteria occurring in a forest soil from Salamanca, Spain. The 16S rRNA gene sequence of strain OHA11 T shared 99.1 % similarity with respect to Pseudomonas baetica a390 T , and 98.9 % similarity with the type strains of Pseudomonas jessenii, Pseudomonas moorei, Pseudomonas umsongensis, Pseudomonas mohnii and Pseudomonas koreensis. The analysis of housekeeping genes rpoB, rpoD and gyrB confirmed its phylogenetic affiliation to the genus Pseudomonas and showed similarities lower than 95 % in almost all cases with respect to the above species. Cells possessed two polar flagella. The respiratory quinone was Q9. The major fatty acids were C 16 : 0 , C 18 : 1 v7c and summed feature 3 (C 16 : 1 v7c/iso-C 15 : 0 2-OH). The strain was oxidase-, catalase-and urease-positive, positive for arginine dihydrolase but negative for nitrate reduction, b-galactosidase production and aesculin hydrolysis. It was able to grow at 31 6C and at pH 11. The DNA G+C content was 58.1 mol%. DNA-DNA hybridization results showed values lower than 49 % relatedness with respect to the type strains of the seven closest related species. Therefore, the combined genotypic, phenotypic and chemotaxonomic data support the classification of strain OHA11T to a novel species of the genus Pseudomonas, for which the name Pseudomonas helmanticensis sp. nov. is proposed. The type strain is OHA11 T (5LMG 28168 T 5CECT 8548 T ).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.