The increasing interest in the preservation of the environment and the health of consumers is changing production methods and food consumption habits. Functional foods are increasingly demanded by consumers because they contain bioactive compounds involved in health protection. In this sense biofertilization using plant probiotics is a reliable alternative to the use of chemical fertilizers, but there are few studies about the effects of plant probiotics on the yield of functional fruits and, especially, on the content of bioactive compounds. In the present work we reported that a strain of genus Phyllobacterium able to produce biofilms and to colonize strawberry roots is able to increase the yield and quality of strawberry plants. In addition, the fruits from plants inoculated with this strain have significantly higher content in vitamin C, one of the most interesting bioactive compounds in strawberries. Therefore the use of selected plant probiotics benefits the environment and human health without agronomical losses, allowing the production of highly functional foods.
Microbial biofertilizers are becoming an effective tool for sustainable agriculture by means of the reduction of the use of chemical fertilizers. However, the knowledge of each specific plant–microorganism interaction is essential for a correct application. In this study, we analyzed the in vitro plant‐growth‐promotion mechanisms of a Rhizobium leguminosarum strain named PEPV16 isolated from Phaseolus vulgaris nodules. This strain was able to produce siderophores and indole acetic acid and to solubilize phosphate. Confocal microscopy showed that this strain was able to colonize the roots of two horticultural crops, Lactuca sativa L. (lettuce) and Daucus carota L. (carrot). Strain PEPV16 was also able to promote the plant growth of both plant species increasing the dry matter of shoots and roots of lettuce and carrots, respectively, as well as to increase the uptake of N and P in the edible parts of both plant species. These data confirmed the suitability of Rhizobium as biofertilizer for nonlegumes.
The growing interest in a healthy lifestyle and in environmental protection is changing habits regarding food consumption and agricultural practices. Good agricultural practice is indispensable, particularly for raw vegetables, and can include the use of plant probiotic bacteria for the purpose of biofertilization. In this work we analysed the probiotic potential of the rhizobial strain PEPV40, identified as Rhizobium laguerreae through the analysis of the recA and atpD genes, on the growth of spinach plants. This strain presents several in vitro plant growth promotion mechanisms, such as phosphate solubilisation and the production of indole acetic acid and siderophores. The strain PEPV40 produces cellulose and forms biofilms on abiotic surfaces. GFP labelling of this strain showed that PEPV40 colonizes the roots of spinach plants, forming microcolonies typical of biofilm initiation. Inoculation with this strain significantly increases several vegetative parameters such as leaf number, size and weight, as well as chlorophyll and nitrogen contents. Therefore, our findings indicate, for the first time, that Rhizobium laguerreae is an excellent plant probiotic, which increases the yield and quality of spinach, a vegetable that is increasingly being consumed raw worldwide.
A bacterial strain, OHA11 T , was isolated during the course of a study of phosphate-solubilizing bacteria occurring in a forest soil from Salamanca, Spain. The 16S rRNA gene sequence of strain OHA11 T shared 99.1 % similarity with respect to Pseudomonas baetica a390 T , and 98.9 % similarity with the type strains of Pseudomonas jessenii, Pseudomonas moorei, Pseudomonas umsongensis, Pseudomonas mohnii and Pseudomonas koreensis. The analysis of housekeeping genes rpoB, rpoD and gyrB confirmed its phylogenetic affiliation to the genus Pseudomonas and showed similarities lower than 95 % in almost all cases with respect to the above species. Cells possessed two polar flagella. The respiratory quinone was Q9. The major fatty acids were C 16 : 0 , C 18 : 1 v7c and summed feature 3 (C 16 : 1 v7c/iso-C 15 : 0 2-OH). The strain was oxidase-, catalase-and urease-positive, positive for arginine dihydrolase but negative for nitrate reduction, b-galactosidase production and aesculin hydrolysis. It was able to grow at 31 6C and at pH 11. The DNA G+C content was 58.1 mol%. DNA-DNA hybridization results showed values lower than 49 % relatedness with respect to the type strains of the seven closest related species. Therefore, the combined genotypic, phenotypic and chemotaxonomic data support the classification of strain OHA11T to a novel species of the genus Pseudomonas, for which the name Pseudomonas helmanticensis sp. nov. is proposed. The type strain is OHA11 T (5LMG 28168 T 5CECT 8548 T ).
The genus Agrobacterium was created a century ago by Conn who included it in the family Rhizobiaceae together with the genus Rhizobium. Initially, the genus Agrobacterium contained the non-pathogenic species Agrobacterium radiobacter and the plant pathogenic species Agrobacterium tumefaciens and Agrobacterium rhizogenes. At the end of the past century two new pathogenic species, Agrobacterium rubi and Agrobacterium vitis, were added to the genus. Already in the present century these species plus Agrobacterium larrymoorei were reclassified into genus Rhizobium. This reclassification was controversial and for a time both genus names were used when new species were described. Few years ago, after a taxonomic revision based on genomic data, the old species A. rhizogenes was maintained in the genus Rhizobium, the old species A. vitis was transferred to the genus Allorhizobium and several Rhizobium species were transferred to the genus Agrobacterium, which currently contains 14 species including the old species A. radiobacter, A. tumefaciens, A. rubi and A. larrymoorei. Most of these species are able to produce tumours in different plants, nevertheless the genus Agrobacterium also encompasses nonpathogenic species, one species able to nodulate legumes and one human pathogenic species. Taking into account that the species affiliations to five Agrobacterium genomospecies have not been determined yet, an increase in the number of species within this genus is expected in the near future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.