Articular cartilage lesions are a particular challenge for regenerative medicine due to cartilage low self-ability repair in case of damage. Hence, a significant goal of musculoskeletal tissue engineering is the development of suitable structures in virtue of their matrix composition and biomechanical properties. The objective of our study was to design in vitro a supporting structure for autologous chondrocyte growth. We realized a biohybrid composite scaffold combining a novel and nonspecific extracellular matrix (ECM), which is decellularized Wharton's jelly ECM, with the biomechanical properties of the synthetic hydrogel polyvinyl alcohol (PVA). Wharton's jelly ECM was tested for its ability in promoting scaffold colonization by chondrocytes and compared with polyvinyl alcohol itself and the more specific decellularized cartilage matrix. Our preliminary evidences highlighted the chance of using Wharton's jelly ECM in combination with PVA hydrogels as an innovative and easily available scaffold for cartilage restoration.
Next generation dental/orthopedic biomaterials must be designed to enhance and support osteoblast adhesion. The osteoblasts use different ways to adhere, that is, integrin- and proteoglycan-mediated mechanisms. The present study reports on the synthesis and osteoblast-adhesive properties of peptides carrying RGD motifs and of sequences mapped on human vitronectin. Our data suggest that osteoblast adhesion on polystyrene plates modified with a linear peptide, in which the GRGDSP sequence is repeated four times, was significantly higher when compared to the adhesion obtained using branched peptides, interestingly containing the same motif. Osteoblast adhesion assays on acellular bone matrix using this active peptide gave very promising results. We also demonstrated that a novel peptide, carrying the X-B-B-B-X-B-B-X motif (where B is a basic amino acid and X is a nonbasic residue), promotes proteoglycan-mediated osteoblast adhesion more efficiently with respect to the KRSR sequence that was recently proposed as heparan-sulfate binding peptide.
Electrospinning is a valuable technique to fabricate fibrous scaffolds for tissue engineering. The typical nonwoven architecture allows cell adhesion and proliferation, and supports diffusion of nutrients and waste products. Poly(epsilon-caprolactone) (PCL) electrospun membranes were produced starting from 14% w/v solutions in (a) mixture 1:1 tetrahydrofuran and N,N-dimethylformamide and (b) chloroform. Matrices made up of randomly arranged uniform fibers free of beads were obtained. The average fiber diameters were (a) 0.8 +/- 0.2 microm and (b) 3.6 +/- 0.8 microm. PCL matrices showed the following tensile mechanical properties: tensile modulus (a) 5.0 +/- 0.7 MPa (b) 6.4 +/- 0.2 MPa, yield stress (a) 0.55 +/- 0.06 MPa (b) 0.43 +/- 0.02 MPa, and ultimate tensile stress (a) 1.7 +/- 0.2 MPa and (b) 0.8 +/- 0.1 MPa. The ultimate strain ranged between 300% and 400%. Cytotoxicity of electrospun membranes was continuously evaluated by means of electric cell-substrate impedance sensing technique using human umbilical vein endothelial cells (HUVEC). PCL matrices resulted free of toxic amounts of contaminants and/or process by-products. In vitro studies performed by culturing HUVEC on micrometric and submicrometric fibrous mats showed that both structures supported cell adhesion and spreading. However, cells cultured on the micrometric network showed higher vitality and improved interaction with the polymeric fibers, suggesting an increased ability to promote cell colonization.
Polyphosphazenes are polymers possessing a skeleton composed of alternating phosphorous and nitrogen atoms, and two side-moieties linked to each phosphorous atom. Polyphosphazenes with amino acid esters as side-moieties are biocompatible and biodegradable polymers. Two polyphosphazenes, poly[bis(ethyl alanate) phosphazene] and poly[(ethyl phenylalanate)0.8(ethyl alanate)0.8(ethyl glycinate)0.4 phosphazene] (PPAGP) were synthesized, and processed to form small fibers. Their ability to support rat neuromicrovascular endothelial cell (EC) adhesion and growth has been studied, using poly(D,L-lactic acid) as reference compound. Scanning electron microscopy revealed that both poly[bis(ethyl alanate) phosphazene] and PPAGP fibers were thinner than poly(D,L-lactic acid) fibers, and possessed a more irregular and porous surface. All polymers increased EC adhesion, compared with polystyrene, but only polyphosphazenes were able to improve EC growth. The highest increase in EC proliferation was induced by PPAGP, which, as revealed by environmental scanning electron microscopy, was also able to induce ECs to arrange into tubular structures. The conclusion is drawn that PPAGP may provide the best scaffold for engineered blood vessels, because it promotes adhesion, growth, and organization of ECs into capillary-like structures.
Angiogenesis has been suggested as a direct contributor to Alzheimer's disease (AD) pathology. The major pathological hallmarks of AD are the presence of neurofibrillary tangles and‚ ß-amyloid plaques associated with activated microglia, astrocytes, degenerating neurons and vascular toxicity. In this study, Aß1-40 and Aß1-42 peptides, both components of the senile plaques in AD, were used to study their angiogenic activity in vitro, by using normal human cerebral endothelial cells (HCECs), and in vivo, by using the chick embryo chorioallantoic membrane (CAM) assay. Results showed that both peptides stimulate in vitro endothelial cell proliferation, chemotaxis and morphogenesis in Matrigel. Moreover, by using the aorta ring assay, both peptides stimulated the formation of capillary-like structures. An angiogenic response was induced in the CAM assay, similar to that induced by fibroblast growth factor-2 (FGF-2), a well-known angiogenic cytokine. Overall, these data support the hypothesis that Aß peptides may contribute to angiogenesis occurring in AD and suggest that limiting the pro-angiogenic activity of Aß peptides may therefore provide a useful target to control angiogenesis associated to AD and therefore limit the disease progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.