In a fully autonomous driving framework, where vehicles operate without human intervention, information sharing plays a fundamental role. In this context, new network solutions have to be designed to handle the large volumes of data generated by the rich sensor suite of the cars in a reliable and efficient way. Among all the possible sensors, Light Detection and Ranging (LiDAR) can produce an accurate 3D point cloud representation of the surrounding environment, which in turn generates high data rates. For this reason, efficient point cloud compression is paramount to alleviate the burden of data transmission over bandwidth-constrained channels and to facilitate real-time communications. In this paper, we propose a pipeline to efficiently compress LiDAR observations in an automotive scenario. First, we leverage the capabilities of RangeNet++, a Deep Neural Network (DNN) used to semantically infer point labels, to reduce the channel load by selecting the most valuable environmental data to be disseminated. Second, we compress the selected points using Draco, a 3D compression algorithm which is able to obtain compression up to the quantization error. Our experiments, validated on the Semantic KITTI dataset, demonstrate that it is possible to compress and send the information at the frame rate of the LiDAR, thus achieving real-time performance.
Data integrity becomes paramount as the number of Internet of Things (IoT) sensor deployments increases. Sensor data can be altered by benign causes or malicious actions. Mechanisms that detect drifts and irregularities can prevent disruptions and data bias in the state of an IoT application. This paper presents LE3D, an ensemble framework of data drift estimators capable of detecting abnormal sensor behaviours. Working collaboratively with surrounding IoT devices, the type of drift (natural/abnormal) can also be identified and reported to the end-user. The proposed framework is a lightweight and unsupervised implementation able to run on resource-constrained IoT devices. Our framework is also generalisable, adapting to new sensor streams and environments with minimal online reconfiguration. We compare our method against state-of-the-art ensemble data drift detection frameworks, evaluating both the real-world detection accuracy as well as the resource utilisation of the implementation. Experimenting with real-world data and emulated drifts, we show the effectiveness of our method, which achieves up to 97% of detection accuracy while requiring minimal resources to run.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.