Polymer flooding has been widely studied and applied for enhancing reservoir oil recovery. The key to evaluating the potential application of polymer injection is based on a clear understanding of the mechanisms involved in the recovery process. This work focuses on history matching of laboratory core flooding of heavy oil recovery by polymer flooding. We match the experiments through a small-scale simulation model and evaluate the challenges of representing the polymer behavior in porous media. The methodology we propose in this paper aims to model core-flooding experiments with laboratory-measured data. These data come from different experiments, including rheology, single-and two-phase core flooding and are separated into consolidated and uncertain data. Consolidated data include: core volume, permeability, porosity, oil viscosity and density, initial saturation conditions, test temperature and injection rate. The uncertain input parameters involve more complex variables, such as viscosity behavior against shear rate and concentration, residual resistance factor, adsorption, inaccessible pore volume and water-oil relative permeabilities. We compare the simulation output parameters with laboratory results and evaluate the quality of the match for four different two-phase core-flooding experiments. The output parameters include histories for differential pressure, recovery factor, water cut and cumulative produced water, oil and liquid. Our results show that the simulation models successfully matched the experimental data, for all the cases, using appropriate representation of the laboratory parameters. The contribution of this work relies on the proposed methodology, which allows integrating the laboratory data in the construction and validation of core scale simulation models appropriately.
Developing an efficient methodology for oil recovery is extremely important in this commodity industry, which may indeed lead to wide spread profitability. In the conventional water injection method, oil displacement occurs by mechanical behavior between fluids. Nevertheless, depending on mobility ratio, a huge quantity of injected water is necessary. Polymer injection aims to increase water viscosity and improve the water/oil mobility ratio, thus improving sweep efficiency. The alternating banks of polymer and water injection appear as an option for the suitable fields. By doing so, the bank serves as an economic alternative, as injecting polymer solution is an expensive process.
The main objective of this study is to analyze and comparison of the efficiency of water injection, polymer injection and polymer alternate water injection. For this purpose, tests were carried out offset in core samples of sandstones using paraffin oil, saline solution and polymer and were obtained the recovery factor and water-oil ratio for each method. The obtained results for the continuous polymer injection and alternating polymer and water injection were promising in relation to the conventional water injection, aiming to anticipate the oil production and to improve the water management with the reduction of injected and produced water volumes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.