Our study indicates that 18F-FDG uptake in lung cancer correlates well with the Glut-1, HK-II, and PCNA expression. For nonmalignant lesions, the presence of a higher inflammatory process correlated with 18F-FDG uptake.
Gated (4D) PET/CT has the potential to greatly improve the accuracy of radiotherapy at treatment sites where internal organ motion is significant. However, the best methodology for applying 4D-PET/CT to target definition is not currently well established. With the goal of better understanding how to best apply 4D information to radiotherapy, initial studies were performed to investigate the effect of target size, respiratory motion and target-to-background activity concentration ratio (TBR) on 3D (ungated) and 4D PET images. Using a PET/CT scanner with 4D or gating capability, a full 3D-PET scan corrected with a 3D attenuation map from 3D-CT scan and a respiratory gated (4D) PET scan corrected with corresponding attenuation maps from 4D-CT were performed by imaging spherical targets (0.5-26.5 mL) filled with (18)F-FDG in a dynamic thorax phantom and NEMA IEC body phantom at different TBRs (infinite, 8 and 4). To simulate respiratory motion, the phantoms were driven sinusoidally in the superior-inferior direction with amplitudes of 0, 1 and 2 cm and a period of 4.5 s. Recovery coefficients were determined on PET images. In addition, gating methods using different numbers of gating bins (1-20 bins) were evaluated with image noise and temporal resolution. For evaluation, volume recovery coefficient, signal-to-noise ratio and contrast-to-noise ratio were calculated as a function of the number of gating bins. Moreover, the optimum thresholds which give accurate moving target volumes were obtained for 3D and 4D images. The partial volume effect and signal loss in the 3D-PET images due to the limited PET resolution and the respiratory motion, respectively were measured. The results show that signal loss depends on both the amplitude and pattern of respiratory motion. However, the 4D-PET successfully recovers most of the loss induced by the respiratory motion. The 5-bin gating method gives the best temporal resolution with acceptable image noise. The results based on the 4D scan protocols can be used to improve the accuracy of determining the gross tumor volume for tumors in the lung and abdomen.
As MRI contrast agents, more hydrophobic molecules reportedly accumulate in the liver and thus are potentially useful as liver MRI contrast agents. In this study, a generation-4 polypropylenimine diaminobutane dendrimer (DAB-Am64), which is expected to be more hydrophobic than the generation-4 polyamidoamine dendrimer (PAMAM-G4D), was used to synthesize a conjugate with 2-(p-isothiocyanatobenzyl)-6-methyl-diethylenetriaminepentaacetic acid (1B4M) [DAB-Am64-(1B4M-Gd) 64 ] for complexing Gd(III) ions. This DAB conjugate quickly accumulated in the liver and its characteristics were studied and compared with those of a PAMAM conjugate [PAMAM-G4D-(1B4M-Gd) 64 ], which is known to be a useful vascular MRI contrast agent, in regard to its availability as a liver MRI contrast agent. DAB-Am64-(1B4M-Gd) 64 accumulated significantly more in the liver and less in blood than PAMAM-G4D-(1B4M-Gd) 64 (P < 0.001). Contrast-enhanced MRI with DAB-Am64-(1B4M-Gd) 64 was able to homogeneously enhance liver parenchyma and visualize both portal and hepatic veins of 0.5 mm diameter in mice. In conclusion, DAB-Am64-(1B4M-Gd) 64
PET/CT-guided abdominal biopsy with use of prior PET/CT images registered with intraprocedural CT scans is feasible and may be helpful when fluorine 18 fluorodeoxyglucose-avid masses that are not seen sufficiently with nonenhanced CT are sampled at biopsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.