In conclusion, major components of CNSL yield overall best dentin biomodification outcomes when applied for one minute without staining the dentin collagen.
The aim was to assess dentin adhesion and physicochemical properties of experimental etch-and-rinse and self-etch adhesives doped with epigallocatechin-3-gallate (EGCG), a well-known collagen crosslinker obtained from green tea (Camellia sinensis). Experimental adhesives were prepared without (0 wt%), with 0.1 or 0.5 wt% EGCG addition. Their degree of conversion was surveyed by FTIR, and bar-shaped specimens were tested to obtain flexural strength and modulus initially and after 1-week ethanol storage. Extracted human molars were prepared, bonded, and cut into resin-dentin sticks for microtensile bond strength test, which was conducted after 24 h or 6-month water storage. Statistical analyses were performed with two-way ANOVA and Tukey's test (p < 0.05). Degree of conversion outcomes depicted a significant polymerization reduction by the addition of EGCG in self-etch adhesive in both concentrations. However, only 0.1% reduced the conversion of etch-and-rinse adhesive. Flexural modulus and strength were significantly diminished (p < 0.05) by the addition of both concentrations of EGCG for the two model adhesives. Dentin-bond strength was reduced after aging with the addition of EGCG to self-etch adhesive. Nevertheless, 0.5% EGCG increased the bond strength of etch-and-rinse adhesive after aging, conversely to the significant reduction for EGCG-free control adhesive. In conclusion, EGCG at 0.5% provides optimal improvements on dentin bonding without altering final polymerization of a model etch-and-rinse adhesive.
SUMMARY
The objective of this study was to synthesize and characterize epigallocatechin-3-gallate (EGCG)–loaded/poly(D-L lactide-co-glycolide) acid (PLGA) microparticles, evaluate their effects on degree of conversion and release assay of adhesives, and subsequently to examine the resin-dentin bond strength of two EGCG formulations (free EGCG or loaded into PLGA microparticles) applied as a pretreatment or incorporated into an adhesive system. The formulations were prepared according to a PLGA:EGCG ratio of 16:1 using the spray-drying technique. The size and polydispersity index were determined by light scattering in aqueous dispersion. The degree of conversion (%DC) and release assay were assessed by Fourier transform infrared spectroscopy and ultraviolet-visible spectrophotometer, respectively. Subsequently, 45 third molars were divided into five groups (n=9) according to the different EGCG application modes and prepared for bond strength testing in a universal testing machine. Results demonstrated no statistically significant difference among the DC means after the PLGA microparticles were loaded with EGCG. For the release assay, the 1.0% PLGA/EGCG group presented better results after being elected for use in the bond strength test. The resin-dentin bond strengths of the experimental groups after 12 months of water storage were significantly higher than in the control group. EGCG could improve the durability of the resin-dentin bond over time and promote a new era for adhesive dentistry with the concept of controlled release.
The use of 40% meta-phosphoric acid with a pH of 0.5 is an alternative acid-etching agent for dentin and enamel bonding. Furthermore, the use of MPA preserves the resin-dentin interface over a 6-months period, due to presence of brushite and octacalcium phosphate and a reduced demineralization pattern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.