The genus Paracoccidioides comprises species of dimorphic fungi that cause paracoccidioidomycosis (PCM), a systemic disease prevalent in Latin America. Here, we investigated whether administration of native 60-kDa heat shock protein of P. brasiliensis (nPbHsp60) or its recombinant counterpart (rPbHsp60) affected the course of experimental PCM. Mice were subcutaneously injected with nPbHsp60 or rPbHsp60 emulsified in complete’s Freund Adjuvant (CFA) at three weeks after intravenous injection of P. brasiliensis yeasts. Infected control mice were injected with CFA or isotonic saline solution alone. Thirty days after the nPbHsp60 or rPbHsp60 administration, mice showed remarkably increased fungal load, tissue inflammation, and granulomas in the lungs, liver, and spleen compared with control mice. Further, rPbHsp60 treatment (i) decreased the known protective effect of CFA against PCM and (ii) increased the concentrations of IL-17, TNF-α, IL-12, IFN-γ, IL-4, IL-10, and TGF-β in the lungs. Together, our results indicated that PbHsp60 induced a harmful immune response, exacerbated inflammation, and promoted fungal dissemination. Therefore, we propose that PbHsp60 contributes to the fungal pathogenesis.
Paracoccidioides brasiliensis and Paracoccidioides lutzii are fungi causing paracoccidioidomycosis (PCM), an autochthonous systemic mycosis found in Latin America. These microorganisms contain a multitude of molecules that may be associated with the complex interaction of the fungus with the host. Here, we identify the enzyme dihydrolipoyl dehydrogenase (DLD) as an exoantigen from P. brasiliensis (Pb18_Dld) by mass spectrometry. Interestingly, the DLD gene expression in yeast form showed higher expression levels than those in mycelial form and transitional phases. Pb18_Dld gene was cloned, and the recombinant protein (rPb18_Dld) was expressed and purified for subsequent studies and production of antibodies. Immunogold labeling and transmission electron microscopy revealed that the Pb18_Dld is also localized in mitochondria and cytoplasm of P. brasiliensis. Moreover, when macrophages were stimulated with rPb18Dld, there was an increase in the phagocytic and microbicidal activity of these cells, as compared with non-stimulated cells. These findings suggest that Pb18_Dld can be involved in the pathogen-host interaction, opening possibilities for studies of this protein in PCM.
Although colony-forming unit (CFU) counting is widely used to quantify fungal load in tissue from animal experimentally infected with Paracoccidioides brasiliensis, several technical disadvantages have been described. Here we developed highly accurate quantitative PCR (qPCR) assays to determine the relative P brasiliensis load in lungs from infected mice. SYBR Green- and TaqMan-based assays using primers and probe for the 43-kDa glycoprotein (gp43) gene detected as little as 270 gene copies (about 2 fg of DNA) per reaction. Although qPCR assays cannot distinguish between living and dead yeasts, we found a highly positive linear correlation between CFU and qPCR.
Paracoccidioidomycosis (PCM) is a systemic mycosis caused by fungi of the Paracoccidioides genus, being endemic in Latin America and with the highest number of cases in Brazil. Paracoccidioides spp. release a wide range of molecules, such as enzymes, which may be important for PCM establishment. Here, we identified the 85- and 90-kDa proteins from the supernatants of P. brasiliensis cultures as being an α-mannosidase. Because the expected mass of this α-mannosidase is 124.2-kDa, we suggest that the proteins were cleavage products. Indeed, we found an α-mannosidase activity in the culture supernatants among the excreted/secreted antigens (ESAg). Moreover, we determined that the enzyme activity was optimal in buffer at pH 5.6, at the temperature of 45ºC, and with a concentration of 3 mM of the substrate p-NP-α-D-Man. Remarkably, we showed that the gene expression of this α-mannosidase was higher in yeasts than hyphae in three P. brasiliensis isolates with different virulence degrees that were grown in Ham's F12 synthetic medium for 15 days. But in complex media YPD and Fava Netto, the significantly higher gene expression in yeasts than in hyphae was seen only for the virulent isolate Pb18, but not for intermediate virulence Pb339 and low virulence Pb265 isolates. These results about the high expression of the α-mannosidase gene in the pathogenic yeast form of P. brasiliensis open perspectives for studying this α-mannosidase concerning the virulence of P. brasiliensis isolates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.