Weight loss and improvement in patients' general condition followed surgery, but serum levels of some vitamins were decreased despite the use of a vitamin-mineral supplement. These patients need continuous follow-up and individualized prescription of supplementation after the surgical procedure to prevent and treat vitamin deficiencies.
BackgroundDuring sperm maturation, there is a reorganization of fatty acids from plasmatic membrane of the spermatozoa, which allows higher membrane integrity and acquisition of sperm motility. However, the fatty acid profile during sperm maturation remains unclear in dogs. Thus, the aim of this study was to identify the fatty acids from the epididymal spermatozoa and plasma during the sperm maturation, and observed changes in the motility and plasmatic membrane parameters. Twenty one adult dogs were used, subsequently to bilateral orchiectomy and epididymal storage, sperm samples were collected from the different segments of the epididymis. Samples were evaluated for conventional microscopy, computer-assisted motility analysis, sperm plasma membrane permeability and the fatty acid analysis (lipids were extracted, transmethylated and analyzed by chromatography).ResultsCaput and corpus sperm showed lower values for the motility variables evaluated and plasmatic membrane integrity, indicating different levels of the fatty acids organization. Saturated, monounsaturated and polyunsaturated fatty acids were in higher concentrations in the spermatozoa from epididymis cauda. Highlighting the presence of caprylic, stearic and docosahexaenoic acids.ConclusionsThese findings demonstrate the influence of the fatty acid profile during sperm maturation, assigning physical and chemical changes in sperm cells, essential for fertilization.
Background Telomere length is inversely associated with the senescence and aging process. Parallelly, obesity can promote telomere shortening. Evidence suggests that physical activity may promote telomere elongation. Objective This study’s objective is to evaluate the effects of combined exercise training on telomere length in obese women. Design and Methods Twenty pre-menopausal women (BMI 30–40 kg/m2, 20–40 years) submitted to combined training (strength and aerobic exercises), but only 13 finished the protocol. Each exercise session lasted 55 min/day, three times a week, throughout 8 weeks. Anthropometric data, body composition, physical performance (Vo2max), and 8-h fasting blood samples were taken before and after 8 weeks of training. Leukocyte DNA was extracted for telomere length by RT-qPCR reaction, using the 2−ΔΔCt methodology. Results After the training intervention, significant differences (p < 0.05) were observed in telomere length (respectively before and after, 1.03 ± 0.04 to 1.07 ± 0.04 T/S ratio), fat-free mass (46 ± 7 to 48 ± 5 kg), Vo2max (35 ± 3 to 38 ± 3 ml/kg/min), and waist circumference (96 ± 8 to 90 ± 6 cm). In addition, an inverse correlation between waist circumference and telomere length was found, before (r = − 0.536, p = 0.017) and after (r = − 0.655, p = 0.015) exercise training. Conclusion Combined exercise promoted leukocyte telomere elongation in obese women. Besides, the data suggested that greater waist circumference may predict shorter telomere length. Clinical Trial Registration ClinicalTrails.gov, NCT03119350. Retrospectively registered on 18 April 2017
Background: Exercise training may improve energy expenditure, thermogenesis, and oxidative capacities. Therefore, we hypothesized that physical training enhances white adipose tissue mitochondrial oxidative capacity from obese women. Objective: To evaluate mitochondrial respiratory capacity, mitochondrial content, and UCP1 gene expression in white adipose tissue from women with obesity before and after the physical training program. Methods: Women (n = 14, BMI 33 ± 3 kg/m 2 , 35 ± 6 years, mean ± SD) were submitted to strength and aerobic exercises (75%-90% maximum heart rate and multiple repetitions), 3 times/week during 8 weeks. All evaluated subjects were paired, before and after training for resting metabolic rate (RMR), substrate oxidation (lipid and carbohydrate) by indirect calorimeter, deuterium oxide body composition, and aerobic maximum velocity (V max ) test. At the beginning and at the ending of the protocol, abdominal subcutaneous adipose tissue was collected to measure the mitochondrial respiration by high-resolution respirometry, mitochondrial content by citrate synthase (CS) activity, and UCP1 gene expression by RT-qPCR. Results: Combined physical training increased RMR, lipid oxidation, and V max but did not change body weight/composition. In WAT, exercise increased CS activity, decreased mitochondrial uncoupled respiration and mRNA of UCP1. RMR was positively correlated with fat-free mass. Conclusion: Physical training promotes an increase in mitochondrial content without changing tissue respiratory capacity, a reduction in mitochondrial uncoupling degree and UCP1 mRNA expression in WAT. Finally, it improved the resting metabolic rate, lipid oxidation and physical performance, independent of the body changing free, or fat mass in obese women. K E Y W O R D Scitrate synthase, human energy metabolism, mitochondria, obesity, physical training, uncoupling protein 1, white adipose tissue
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.