Abstract. Over the past century the municipal area of Genoa has been affected by recurring flood events and several landslides that have caused severe damage to urbanized areas on both the coastal-fluvial plains and surrounding slopes, sometimes involving human casualties. The analysis of past events' annual distribution indicates that these phenomena have occurred with rising frequency in the last seventy years, following the main land use change due to the development of harbour, industrial, and residential areas, which has strongly impacted geomorphological processes. Consequently, in Genoa, civil protection activities are taking on an increasing importance for geo-hydrological risk mitigation. The current legislative framework assigns a key role in disaster prevention to municipalities, emergency plan development, as well as response action coordination in disaster situations. In view of the geomorphological and environmental complexity of the study area and referring to environmental laws, geo-hydrological risk mitigation strategies adopted by local administrators for civil protection purposes are presented as examples of current land/urban management related to geo-hydrological hazards. Adopted measures have proven to be effective on several levels (planning, management, structure, understanding, and publication) in different cases. Nevertheless, the last flooding event (4 November 2011) has shown that communication and public information concerning the perception of geo-hydrological hazard can be improved.
A detailed, quantitative, multitemporal analysis of historical maps, aerial photos, and satellite images was performed to investigate the channel planform changes that occurred along the Scrivia River floodplain from 1878 to 2016. Various channel planform features, including channel length, area, width, braiding, sinuosity, lateral migration, activity, and stability, were computed through an innovative geographic information system–based procedure, starting from manually digitized active-channel polygons. Three active-channel morphological evolution stages are evident from: (1) 1878 to the 1950s; (2) the 1950s to the end of 1990s; and (3) the end of 1990s onward. In the first period, the river was generally able to migrate in its floodplain, shaping the riverscape. Active-channel narrowing and increasing channel stability characterize the second period. The most recent phase shows an inversion of the morphological evolutionary trend. This last phase is characterized by a slight generalized widening related to the reactivation of stabilized surfaces and to bank-erosion processes. Particularly from the 1950s to the 1990s, in-channel sediment mining and channelization with consequent occupation of riverine areas strongly affected the Scrivia River. These factors, together with floods, are thought to be the most likely causes of such consistent and fast morphological changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.